ﻻ يوجد ملخص باللغة العربية
In a previous paper, we have shown that the gamma subordinators may be represented as inverse local times of certain diffusions. In the present paper, we give such representations for other subordinators whose Levy densities are of the form $ frac{mathcal{C}}{(sinh(y))^gamma}$, $0 < gamma < 2$, and the more general family obtained from those by exponential tilting.
We give a representation of the Gamma subordinator as a Krein functional of Brownian motion, using the known representations for stable subordinators and Esscher transforms. In particular, we have obtained Krein representations of the subordinators w
We describe the CGMY and Meixner processes as time changed Brownian motions. The CGMY uses a time change absolutely continuous with respect to the one-sided stable $(Y/2)$ subordinator while the Meixner time change is absolutely continuous with respe
We revisit two classical problems: the determination of the law of the underlying with respect to a risk-neutral measure on the basis of option prices, and the pricing of options with convex payoffs in terms of prices of call options with the same ma
We consider a class of tempered subordinators, namely a class of subordinators with one-dimensional marginal tempered distributions which belong to a family studied in [3]. The main contribution in this paper is a non-central moderate deviations resu
It is well-known that compositions of Markov processes with inverse subordinators are governed by integro-differential equations of generalized fractional type. This kind of processes are of wide interest in statistical physics as they are connected