ﻻ يوجد ملخص باللغة العربية
We revisit two classical problems: the determination of the law of the underlying with respect to a risk-neutral measure on the basis of option prices, and the pricing of options with convex payoffs in terms of prices of call options with the same maturity (all options are European). The formulation of both problems is expressed in a language loosely inspired by the theory of inverse problems, and several proofs of the corresponding solutions are provided that do not rely on any special assumptions on the law of the underlying and that may, in some cases, extend results currently available in the literature.
A new framework for asset price dynamics is introduced in which the concept of noisy information about future cash flows is used to derive the price processes. In this framework an asset is defined by its cash-flow structure. Each cash flow is modell
We propose a model for an insurance loss index and the claims process of a single insurance company holding a fraction of the total number of contracts that captures both ordinary losses and losses due to catastrophes. In this model we price a catast
In this paper we will develop a methodology for obtaining pricing expressions for financial instruments whose underlying asset can be described through a simple continuous-time random walk (CTRW) market model. Our approach is very natural to the issu
In this paper, we price American-style Parisian down-and-in call options under the Black-Scholes framework. Usually, pricing an American-style option is much more difficult than pricing its European-style counterpart because of the appearance of the
We propose an extension of the Cox-Ross-Rubinstein (CRR) model based on q-binomial (or Kemp) random walks, with application to default with logistic failure rates. This model allows us to consider time-dependent switching probabilities varying accord