ﻻ يوجد ملخص باللغة العربية
Convergence rates of Markov chains have been widely studied in recent years. In particular, quantitative bounds on convergence rates have been studied in various forms by Meyn and Tweedie [Ann. Appl. Probab. 4 (1994) 981-1101], Rosenthal [J. Amer. Statist. Assoc. 90 (1995) 558-566], Roberts and Tweedie [Stochastic Process. Appl. 80 (1999) 211-229], Jones and Hobert [Statist. Sci. 16 (2001) 312-334] and Fort [Ph.D. thesis (2001) Univ. Paris VI]. In this paper, we extend a result of Rosenthal [J. Amer. Statist. Assoc. 90 (1995) 558-566] that concerns quantitative convergence rates for time-homogeneous Markov chains. Our extension allows us to consider f-total variation distance (instead of total variation) and time-inhomogeneous Markov chains. We apply our results to simulated annealing.
This work contributes to the theory of Wiener-Hopf type factorization for finite Markov chains. This theory originated in the seminal paper Barlow et al. (1980), which treated the case of finite time-homogeneous Markov chains. Since then, several wor
Continuous-time Markov chains are mathematical models that are used to describe the state-evolution of dynamical systems under stochastic uncertainty, and have found widespread applications in various fields. In order to make these models computation
Let $X_1,X_2,ldots$ and $Y_1,Y_2,ldots$ be two random sequences so that every random variable takes values in a finite set $mathbb{A}$. We consider a global similarity score $L_n:=L(X_1,ldots,X_n;Y_1,ldots,Y_n)$ that measures the homology (relatednes
This paper contributes an in-depth study of properties of continuous time Markov chains (CTMCs) on non-negative integer lattices $N_0^d$, with particular interest in one-dimensional CTMCs with polynomial transitions rates. Such stochastic processes a
We study certain properties of the function space of autocorrelation functions of Unit Continuous Time Markov Chains (CTMCs). It is shown that under particular conditions, the $L^p$ norm of the autocorrelation function of arbitrary finite state space