ﻻ يوجد ملخص باللغة العربية
In this short note, we investigate some features of the space $Inject{d}{m}$ of linear injective maps from $bbR^d$ into $bbR^m$; in particular, we discuss in detail its relationship with the Stiefel manifold $V_{m,d}$, viewed, in this context, as the set of orthonormal systems of $d$ vectors in $bbR^m$. Finally, we show that the Stiefel manifold $V_{m,d}$ is a deformation retract of $Inject{d}{m}$. One possible application of this remarkable fact lies in the study of perturbative invariants of higher-dimensional (long) knots in $bbR^m$: in fact, the existence of the aforementioned deformation retraction is the key tool for showing a vanishing lemma for configuration space integrals {`a} la Bott--Taubes (see cite{BT} for the 3-dimensional results and cite{CR1}, cite{C} for a first glimpse into higher-dimensional knot invariants).
We shall give a twisted Dirac structure on the space of irreducible connections on a SU(n)-bundle over a three-manifold, and give a family of twisted Dirac structures on the space of irreducible connections on the trivial SU(n)-bundle over a four-man
Let $M$ be a smooth closed orientable manifold and $mathcal{P}(M)$ the space of Poisson structures on $M$. We construct a Poisson bracket on $mathcal{P}(M)$ depending on a choice of volume form. The Hamiltonian flow of the bracket acts on $mathcal{P}
Quite a few algorithms have been proposed to optimize the transmission performance of Multipath TCP (MPTCP). However, existing MPTCP protocols are still far from satisfactory in lossy and ever-changing networks because of their loss-based congestion
As the loop space of a Riemannian manifold is infinite-dimensional, it is a non-trivial problem to make sense of the top degree component of a differential form on it. In this paper, we show that a formula from finite dimensions generalizes to assign
We consider co-rotational wave maps from the $(1+d)$-dimensional Minkowski space into the $d$-sphere for $dgeq 3$ odd. This is an energy-supercritical model which is known to exhibit finite-time blowup via self-similar solutions. Based on a method de