ترغب بنشر مسار تعليمي؟ اضغط هنا

Descent of the Definition Field of a Tower of Function Fields and Applications

116   0   0.0 ( 0 )
 نشر من قبل Ballet Stephane
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let us consider an algebraic function field defined over a finite Galois extension $K$ of a perfect field $k$. We give some conditions allowing the descent of the definition field of the algebraic function field from $K$ to $k$. We apply these results to the descent of the definition field of a tower of function fields.We give explicitly the equations of the intermediate steps of an Artin-Schreier type extension reduced from $F_{q^2}$ to $F_q$. By applying these results to a completed Garcia-Stichtenoths tower we improve the upper bounds and the upper asymptotic bounds of the bilinear complexity of the multiplication in finite fields.

قيم البحث

اقرأ أيضاً

151 - Takehiro Hasegawa 2017
Elkies proposed a procedure for constructing explicit towers of curves, and gave two towers of Shimura curves as relevant examples. In this paper, we present a new explicit tower of Shimura curves constructed by using this procedure.
We prove two theorems concerning isogenies of elliptic curves over function fields. The first one describes the variation of the height of the $j$-invariant in an isogeny class. The second one is an isogeny estimate, providing an explicit bound on th e degree of a minimal isogeny between two isogenous elliptic curves. We also give several corollaries of these two results.
113 - Amilcar Pacheco 2006
Let $k$ be a field of characteristic $q$, $cac$ a smooth geometrically connected curve defined over $k$ with function field $K:=k(cac)$. Let $A/K$ be a non constant abelian variety defined over $K$ of dimension $d$. We assume that $q=0$ or $>2d+1$. L et $p e q$ be a prime number and $cactocac$ a finite geometrically textsc{Galois} and etale cover defined over $k$ with function field $K:=k(cac)$. Let $(tau,B)$ be the $K/k$-trace of $A/K$. We give an upper bound for the $bbz_p$-corank of the textsc{Selmer} group $text{Sel}_p(Atimes_KK)$, defined in terms of the $p$-descent map. As a consequence, we get an upper bound for the $bbz$-rank of the textsc{Lang-Neron} group $A(K)/tauB(k)$. In the case of a geometric tower of curves whose textsc{Galois} group is isomorphic to $bbz_p$, we give sufficient conditions for the textsc{Lang-Neron} group of $A$ to be uniformly bounded along the tower.
125 - Amilcar Pacheco 2002
Let $C$ be a smooth projective curve over $mathbb{F}_q$ with function field $K$, $E/K$ a nonconstant elliptic curve and $phi:mathcal{E}to C$ its minimal regular model. For each $Pin C$ such that $E$ has good reduction at $P$, i.e., the fiber $mathcal {E}_P=phi^{-1}(P)$ is smooth, the eigenvalues of the zeta-function of $mathcal{E}_P$ over the residue field $kappa_P$ of $P$ are of the form $q_P^{1/2}e^{itheta_P},q_{P}e^{-itheta_P}$, where $q_P=q^{deg(P)}$ and $0letheta_Plepi$. The goal of this note is to determine given an integer $Bge 1$, $alpha,betain[0,pi]$ the number of $Pin C$ where the reduction of $E$ is good and such that $deg(P)le B$ and $alphaletheta_Plebeta$.
We study the Jacobian $J$ of the smooth projective curve $C$ of genus $r-1$ with affine model $y^r = x^{r-1}(x + 1)(x + t)$ over the function field $mathbb{F}_p(t)$, when $p$ is prime and $rge 2$ is an integer prime to $p$. When $q$ is a power of $p$ and $d$ is a positive integer, we compute the $L$-function of $J$ over $mathbb{F}_q(t^{1/d})$ and show that the Birch and Swinnerton-Dyer conjecture holds for $J$ over $mathbb{F}_q(t^{1/d})$. When $d$ is divisible by $r$ and of the form $p^ u +1$, and $K_d := mathbb{F}_p(mu_d,t^{1/d})$, we write down explicit points in $J(K_d)$, show that they generate a subgroup $V$ of rank $(r-1)(d-2)$ whose index in $J(K_d)$ is finite and a power of $p$, and show that the order of the Tate-Shafarevich group of $J$ over $K_d$ is $[J(K_d):V]^2$. When $r>2$, we prove that the new part of $J$ is isogenous over $overline{mathbb{F}_p(t)}$ to the square of a simple abelian variety of dimension $phi(r)/2$ with endomorphism algebra $mathbb{Z}[mu_r]^+$. For a prime $ell$ with $ell mid pr$, we prove that $J[ell](L)={0}$ for any abelian extension $L$ of $overline{mathbb{F}}_p(t)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا