ترغب بنشر مسار تعليمي؟ اضغط هنا

Rational connectedness of log $Q$-Fano varieties

111   0   0.0 ( 0 )
 نشر من قبل Qi Zhang
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English
 تأليف Qi Zhang




اسأل ChatGPT حول البحث

In this paper, we give an affirmative answer to a conjecture in the Minimal Model Program. We prove that log $Q$-Fano varieties of dim $n$ are rationally connected. We also study the behavior of the canonical bundles under projective morphisms.



قيم البحث

اقرأ أيضاً

83 - Guodu Chen , Chuyu Zhou 2021
Let $X$ be a strictly log canonical Fano variety, we show that every lc place of complements is dreamy, and there exists a correspondence between weakly special test configurations of $(X,-K_X)$ and lc places of complements.
Complete intersections inside rational homogeneous varieties provide interesting examples of Fano manifolds. For example, if $X = cap_{i=1}^r D_i subset G/P$ is a general complete intersection of $r$ ample divisors such that $K_{G/P}^* otimes mathcal {O}_{G/P}(-sum_i D_i)$ is ample, then $X$ is Fano. We first classify these Fano complete intersections which are locally rigid. It turns out that most of them are hyperplane sections. We then classify general hyperplane sections which are quasi-homogeneous.
182 - Martha Precup 2013
In this paper we consider certain closed subvarieties of the flag variety, known as Hessenberg varieties. We give a connectedness criterion for semisimple Hessenberg varieties generalizing a criterion given by Anderson and Tymoczko. We show that nilp otent Hessenberg varieties are rationally connected.
359 - Eugen Hellmann 2010
We show that the Kisin varieties associated to simple $phi$-modules of rank $2$ are connected in the case of an arbitrary cocharacter. This proves that the connected components of the generic fiber of the flat deformation ring of an irreducible $2$-d imensional Galois representation of a local field are precisely the components where the multiplicities of the Hodge-Tate weights are fixed.
287 - Ulrich Goertz 2008
We give a criterion which determines when a union of one-dimensional Deligne-Lusztig varieties has a connected closure. We also obtain a new, short proof of the connectedness criterion for Deligne-Lusztig varieties due to Lusztig.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا