ﻻ يوجد ملخص باللغة العربية
Let $X$ be a strictly log canonical Fano variety, we show that every lc place of complements is dreamy, and there exists a correspondence between weakly special test configurations of $(X,-K_X)$ and lc places of complements.
In this paper, we give an affirmative answer to a conjecture in the Minimal Model Program. We prove that log $Q$-Fano varieties of dim $n$ are rationally connected. We also study the behavior of the canonical bundles under projective morphisms.
Shokurovs ACC Conjecture says that the set of all log canonical thresholds on varieties of bounded dimension satisfies the Ascending Chain Condition. This conjecture was proved for log canonical thresholds on smooth varieties in [EM1]. Here we use th
Let T_n denote the set of log canonical thresholds of pairs (X,Y), with X a nonsingular variety of dimension n, and Y a nonempty closed subscheme of X. Using non-standard methods, we show that every limit of a decreasing sequence in T_n lies in T_{n-
We establish a relative spannedness for log canonical pairs, which is a generalization of the basepoint-freeness for varieties with log-terminal singularities by Andreatta--Wisniewski. Moreover, we establish a generalization for quasi-log canonical pairs.
We develop a general approach to prove K-stability of Fano varieties. The new theory is used to (a) prove the existence of Kahler-Einstein metrics on all smooth Fano hypersurfaces of Fano index two, (b) to compute the stability thresholds for hypersu