ﻻ يوجد ملخص باللغة العربية
The aim of this paper is to review and discuss in detail local aspects of principal bundles with groupoid structure. Many results, in particular from the second and third section, are already known to some extents, but, due to the lack of a ``unified point of view on the subject, I decided nonetheless to (re)define all the main concepts and write all proofs; however, some results are reformulated in a more elegant way, using the division map and the generalized conjugation of a Lie groupoid. In the same framework, I discuss later generalized groupoids and Morita equivalences from a local point of view; in particular, I found a (so far as I know) new characterization of generalized morphisms coming from nonabelian ech cohomology, which allows one to view generalized morphisms as a generalization of classical descent data. I found also a factorization formula for the division map, which is the crucial point in the local formulation of Morita equivalences.
Motivated by the computations done in cite{C1}, where I introduced and discussed what I called the groupoid of generalized gauge transformations, viewed as a groupoid over the objects of the category $mathsf{Bun}_{G,M}$ of principal $G$-bundles over
For a strict Lie 2-group, we develop a notion of Lie 2-algebra-valued differential forms on Lie groupoids, furnishing a differential graded-commutative Lie algebra equipped with an adjoint action of the Lie 2-group and a pullback operation along Mori
A nice differential-geometric framework for (non-abelian) higher gauge theory is provided by principal 2-bundles, i.e. categorified principal bundles. Their total spaces are Lie groupoids, local trivializations are kinds of Morita equivalences, and c
In this paper we introduce a notion of parallel transport for principal bundles with connections over differentiable stacks. We show that principal bundles with connections over stacks can be recovered from their parallel transport thereby extending
In this paper, a notion of a principal $2$-bundle over a Lie groupoid has been introduced. For such principal $2$-bundles, we produced a short exact sequence of VB-groupoids, namely, the Atiyah sequence. Two notions of connection structures viz. stri