ترغب بنشر مسار تعليمي؟ اضغط هنا

The division map of principal bundles with groupoid structure and generalized gauge transformations

93   0   0.0 ( 0 )
 نشر من قبل Carlo Antonio Rossi
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. A. Rossi




اسأل ChatGPT حول البحث

Motivated by the computations done in cite{C1}, where I introduced and discussed what I called the groupoid of generalized gauge transformations, viewed as a groupoid over the objects of the category $mathsf{Bun}_{G,M}$ of principal $G$-bundles over a given manifold $M$, I develop in this paper the same ideas for the more general case of {em principal $calG$-bundles or principal bundles with structure groupoid $calG$}, where now $calG$ is a Lie groupoid in the sense of cite{Moer2}. Most of the concepts introduced in cite{C1} can be translated almost verbatim in the framework of principal bundles with structure groupoid $calG$; in particular, the key r�le for the construction of generalized gauge transformations is again played by (the equivalent in the framework of principal bundles with groupoid structure of) the division map $f_P$. Of great importance are also the generalized conjugation in a groupoid and the concept of (twisted) equivariant maps between groupoid-spaces.



قيم البحث

اقرأ أيضاً

68 - C. A. Rossi 2004
The aim of this paper is to review and discuss in detail local aspects of principal bundles with groupoid structure. Many results, in particular from the second and third section, are already known to some extents, but, due to the lack of a ``unified point of view on the subject, I decided nonetheless to (re)define all the main concepts and write all proofs; however, some results are reformulated in a more elegant way, using the division map and the generalized conjugation of a Lie groupoid. In the same framework, I discuss later generalized groupoids and Morita equivalences from a local point of view; in particular, I found a (so far as I know) new characterization of generalized morphisms coming from nonabelian ech cohomology, which allows one to view generalized morphisms as a generalization of classical descent data. I found also a factorization formula for the division map, which is the crucial point in the local formulation of Morita equivalences.
In this paper, a notion of a principal $2$-bundle over a Lie groupoid has been introduced. For such principal $2$-bundles, we produced a short exact sequence of VB-groupoids, namely, the Atiyah sequence. Two notions of connection structures viz. stri ct connections and semi-strict connections on a principal $2$-bundle arising respectively, from a retraction of the Atiyah sequence and a retraction up to a natural isomorphism have been introduced. We constructed a class of principal $mathbb{G}=[G_1rightrightarrows G_0]$-bundles and connections from a given principal $G_0$-bundle $E_0rightarrow X_0$ over $[X_1rightrightarrows X_0]$ with connection. An existence criterion for the connections on a principal $2$-bundle over a proper, etale Lie groupoid is proposed. The action of the $2$-group of gauge transformations on the category of strict and semi-strict connections has been studied. Finally we noted an extended symmetry of the category of semi-strict connections.
123 - Konrad Waldorf 2017
A nice differential-geometric framework for (non-abelian) higher gauge theory is provided by principal 2-bundles, i.e. categorified principal bundles. Their total spaces are Lie groupoids, local trivializations are kinds of Morita equivalences, and c onnections are Lie-2-algebra-valued 1-forms. In this article, we construct explicitly the parallel transport of a connection on a principal 2-bundle. Parallel transport along a path is a Morita equivalence between the fibres over the end points, and parallel transport along a surface is an intertwiner between Morita equivalences. We prove that our constructions fit into the general axiomatic framework for categorified parallel transport and surface holonomy.
In this Note, we propose a line bundle approach to odd-dimensional analogues of generalized complex structures. This new approach has three main advantages: (1) it encompasses all existing ones; (2) it elucidates the geometric meaning of the integrab ility condition for generalized contact structures; (3) in light of new results on multiplicative forms and Spencer operators, it allows a simple interpretation of the defining equations of a generalized contact structure in terms of Lie algebroids and Lie groupoids.
114 - Konrad Waldorf 2016
For a strict Lie 2-group, we develop a notion of Lie 2-algebra-valued differential forms on Lie groupoids, furnishing a differential graded-commutative Lie algebra equipped with an adjoint action of the Lie 2-group and a pullback operation along Mori ta equivalences between Lie groupoids. Using this notion, we define connections on principal 2-bundles as Lie 2-algebra-valued 1-forms on the total space Lie groupoid of the 2-bundle, satisfying a condition in complete analogy to connections on ordinary principal bundles. We carefully treat various notions of curvature, and prove a classification result by the non-abelian differential cohomology of Breen-Messing. This provides a consistent, global perspective to higher gauge theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا