ﻻ يوجد ملخص باللغة العربية
Motivated by the computations done in cite{C1}, where I introduced and discussed what I called the groupoid of generalized gauge transformations, viewed as a groupoid over the objects of the category $mathsf{Bun}_{G,M}$ of principal $G$-bundles over a given manifold $M$, I develop in this paper the same ideas for the more general case of {em principal $calG$-bundles or principal bundles with structure groupoid $calG$}, where now $calG$ is a Lie groupoid in the sense of cite{Moer2}. Most of the concepts introduced in cite{C1} can be translated almost verbatim in the framework of principal bundles with structure groupoid $calG$; in particular, the key r�le for the construction of generalized gauge transformations is again played by (the equivalent in the framework of principal bundles with groupoid structure of) the division map $f_P$. Of great importance are also the generalized conjugation in a groupoid and the concept of (twisted) equivariant maps between groupoid-spaces.
The aim of this paper is to review and discuss in detail local aspects of principal bundles with groupoid structure. Many results, in particular from the second and third section, are already known to some extents, but, due to the lack of a ``unified
In this paper, a notion of a principal $2$-bundle over a Lie groupoid has been introduced. For such principal $2$-bundles, we produced a short exact sequence of VB-groupoids, namely, the Atiyah sequence. Two notions of connection structures viz. stri
A nice differential-geometric framework for (non-abelian) higher gauge theory is provided by principal 2-bundles, i.e. categorified principal bundles. Their total spaces are Lie groupoids, local trivializations are kinds of Morita equivalences, and c
In this Note, we propose a line bundle approach to odd-dimensional analogues of generalized complex structures. This new approach has three main advantages: (1) it encompasses all existing ones; (2) it elucidates the geometric meaning of the integrab
For a strict Lie 2-group, we develop a notion of Lie 2-algebra-valued differential forms on Lie groupoids, furnishing a differential graded-commutative Lie algebra equipped with an adjoint action of the Lie 2-group and a pullback operation along Mori