ﻻ يوجد ملخص باللغة العربية
Motivated by Stanleys results in cite{St02}, we generalize the rank of a partition $lambda$ to the rank of a shifted partition $S(lambda)$. We show that the number of bars required in a minimal bar tableau of $S(lambda)$ is max$(o, e + (ell(lambda) mathrm{mod} 2))$, where $o$ and $e$ are the number of odd and even rows of $lambda$. As a consequence we show that the irreducible projective characters of $S_n$ vanish on certain conjugacy classes. Another corollary is a lower bound on the degree of the terms in the expansion of Schurs $Q_{lambda}$ symmetric functions in terms of the power sum symmetric functions.
In 1976, King defined certain tableaux model, called King tableaux in this paper, counting weight multiplicities of irreducible representation of the symplectic group $Sp(2m)$ for a given dominant weight. Since Kashiwara defined crystals, it is an op
This paper completely characterizes the standard Young tableaux that can be reconstructed from their sets or multisets of $1$-minors. In particular, any standard Young tableau with at least $5$ entries can be reconstructed from its set of $1$-minors.
We give a counting formula for the set of rectangular increasing tableaux in terms of generalized Narayana numbers. We define small $m$-Schroder paths and give a bijection between the set of increasing rectangular tableaux and small $m$-Schroder path
In this paper, we propose a notion of colored Motzkin paths and establish a bijection between the $n$-cell standard Young tableaux (SYT) of bounded height and the colored Motzkin paths of length $n$. This result not only gives a lattice path interpre
In this paper, we study a new cyclic sieving phenomenon on the set $mathsf{SST}_n(lambda)$ of semistandard Young tableaux with the cyclic action $mathsf{c}$ arising from its $U_q(mathfrak{sl}_n)$-crystal structure. We prove that if $lambda$ is a Youn