ﻻ يوجد ملخص باللغة العربية
We give a counting formula for the set of rectangular increasing tableaux in terms of generalized Narayana numbers. We define small $m$-Schroder paths and give a bijection between the set of increasing rectangular tableaux and small $m$-Schroder paths, generalizing a result of Pechenik [3]. Using $K$-jeu de taquin promotion, which was defined by Thomas and Yong [10], we give a cyclic sieving phenomenon for the set of increasing hook tableaux.
We first establish the result that the Narayana polynomials can be represented as the integrals of the Legendre polynomials. Then we represent the Catalan numbers in terms of the Narayana polynomials by three different identities. We give three diffe
In 1976, King defined certain tableaux model, called King tableaux in this paper, counting weight multiplicities of irreducible representation of the symplectic group $Sp(2m)$ for a given dominant weight. Since Kashiwara defined crystals, it is an op
This paper completely characterizes the standard Young tableaux that can be reconstructed from their sets or multisets of $1$-minors. In particular, any standard Young tableau with at least $5$ entries can be reconstructed from its set of $1$-minors.
Motivated by Stanleys results in cite{St02}, we generalize the rank of a partition $lambda$ to the rank of a shifted partition $S(lambda)$. We show that the number of bars required in a minimal bar tableau of $S(lambda)$ is max$(o, e + (ell(lambda) m
In this paper, we prove the real-rootedness of two classes of generalized Narayana polynomials: one arising as the $h$-polynomials of the generalized associahedron associated to the finite Weyl groups, the other arising in the study of the infinite l