ﻻ يوجد ملخص باللغة العربية
Let F denote a homogeneous degree 4 polynomial in 3 variables, and let s be an integer between 1 and 5. We would like to know if F can be written as a sum of fourth powers of s linear forms (or a degeneration). We determine necessary and sufficient conditions for this to be possible. These conditions are expressed as the vanishing of certain concomitants of F for the natural action of SL_3.
We study the reciprocal variety to the linear space of symmetric matrices (LSSM) of catalecticant matrices associated with ternary quartics. With numerical tools, we obtain 85 to be its degree and 36 to be the ML-degree of the LSSM. We provide a geom
Ternary real-valued quartics in $mathbb{R}^3$ being invariant under octahedral symmetry are considered. The geometric classification of these surfaces is given. A new type of surfaces emerge from this classification.
We show how one can use the representation theory of ternary quartics to construct all vector-valued Siegel modular forms and Teichmuller modular forms of degree 3. The relation between the order of vanishing of a concomitant on the locus of double c
We investigate an extension of a lower bound on the Waring (cactus) rank of homogeneous forms due to Ranestad and Schreyer. We show that for particular classes of homogeneous forms, for which a generalization of this method applies, the lower bound e
We show that the Waring rank of the $3 times 3$ determinant, previously known to be between $14$ and $18$, is at least $15$. We use syzygies of the apolar ideal, which have not been used in this way before. Additionally, we show that the cactus rank of the $3 times 3$ permanent is at least $14$.