ﻻ يوجد ملخص باللغة العربية
The authors compute the long-time asymptotics for solutions of the NLS equation just under the assumption that the initial data lies in a weighted Sobolev space. In earlier work (see e.g. [DZ1],[DIZ]) high orders of decay and smoothness are required for the initial data. The method here is a further development of the steepest descent method of [DZ1], and replaces certain absolute type estimates in [DZ1] with cancellation from oscillations.
In this paper, we are going to investigate Cauchy problem for nonlocal nonlinear Schrodinger equation with the initial potential $q_0(x)$ in weighted sobolev space $H^{1,1}(mathbb{R})$, begin{align*} iq_t(x,t)&+q_{xx}(x,t)+2sigma q^2(x,t)bar q(-x,t)=
In this work, the $overline{partial}$ steepest descent method is employed to investigate the soliton resolution for the Hirota equation with the initial value belong to weighted Sobolev space $H^{1,1}(mathbb{R})={fin L^{2}(mathbb{R}): f,xfin L^{2}(ma
The soliton resolution for the Harry Dym equation is established for initial conditions in weighted Sobolev space $H^{1,1}(mathbb{R})$. Combining the nonlinear steepest descent method and $bar{partial}$-derivatives condition, we obtain that when $fra
We employ the $bar{partial}$-steepest descent method in order to investigate the Cauchy problem of the complex short pulse (CSP) equation with initial conditions in weighted Sobolev space $H^{1,1}(mathbb{R})={fin L^{2}(mathbb{R}): f,xfin L^{2}(mathbb
We investigate the long time asymptotics for the Cauchy problem of the defocusing modified Kortweg-de Vries (mKdV) equation with finite density initial data in different solitonic regions begin{align*} &q_t(x,t)-6q^2(x,t)q_{x}(x,t)+q_{xxx}(x,t)=0,