ﻻ يوجد ملخص باللغة العربية
In this paper, we are going to investigate Cauchy problem for nonlocal nonlinear Schrodinger equation with the initial potential $q_0(x)$ in weighted sobolev space $H^{1,1}(mathbb{R})$, begin{align*} iq_t(x,t)&+q_{xx}(x,t)+2sigma q^2(x,t)bar q(-x,t)=0,quadsigma=pm1, q(x,0)&=q_0(x). end{align*} We show that the solution can be represented by the solution of a Riemann-Hilbert problem (RH problem), and assuming no discrete spectrum, we majorly apply $barpartial$-steepest cescent descent method on analyzing the long-time asymptotic behavior of it.
We consider the Cauchy problem for the defocusing Schr$ddot{text{o}}$dinger (NLS) equation with finite density initial data begin{align} &iq_t+q_{xx}-2(|q|^2-1)q=0, onumber &q(x,0)=q_0(x), quad lim_{x to pm infty}q_0(x)=pm 1. onumber end{align} Rece
The authors compute the long-time asymptotics for solutions of the NLS equation just under the assumption that the initial data lies in a weighted Sobolev space. In earlier work (see e.g. [DZ1],[DIZ]) high orders of decay and smoothness are required
We consider the Schrodinger equation with nonlinear dissipation begin{equation*} i partial _t u +Delta u=lambda|u|^{alpha}u end{equation*} in ${mathbb R}^N $, $Ngeq1$, where $lambdain {mathbb C} $ with $Imlambda<0$. Assuming $frac {2} {N+2}<alpha<fra
We study the time-asymptotic behavior of solutions of the Schrodinger equation with nonlinear dissipation begin{equation*} partial _t u = i Delta u + lambda |u|^alpha u end{equation*} in ${mathbb R}^N $, $Ngeq1$, where $lambdain {mathbb C}$, $Re la
We consider the $1d$ cubic nonlinear Schrodinger equation with a large external potential $V$ with no bound states. We prove global regularity and quantitative bounds for small solutions under mild assumptions on $V$. In particular, we do not require