ﻻ يوجد ملخص باللغة العربية
This paper consists of variations upon the theme of limiting modular symbols. Topics covered are: an expression of limiting modular symbols as Birkhoff averages on level sets of the Lyapunov exponent of the shift of the continued fraction, a vanishing theorem depending on the spectral properties of a generalized Gauss-Kuzmin operator, the construction of certain non-trivial homology classes associated to non-closed geodesics on modular curves, certain Selberg zeta functions and C^* algebras related to shift invariant sets.
Mazur, Rubin, and Stein have recently formulated a series of conjectures about statistical properties of modular symbols in order to understand central values of twists of elliptic curve $L$-functions. Two of these conjectures relate to the asymptoti
We provide a new and simple automorphic method using Eisenstein series to study the equidistribution of modular symbols modulo primes, which we apply to prove an average version of a conjecture of Mazur and Rubin. More precisely, we prove that modula
We introduce new invariants in equivariant birational geometry and study their relation to modular symbols and cohomology of arithmetic groups.
The evaluations of determinants with Legendre symbol entries have close relation with character sums over finite fields. Recently, Sun posed some conjectures on this topic. In this paper, we prove some conjectures of Sun and also study some variants.
We introduce a simple quantum generalization of the spectrum of classical Lyapunov exponents. We apply it to the SYK and XXZ models, and study the Lyapunov growth and entropy production. Our numerical results suggest that a black hole is not just the