ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Lyapunov Spectrum

286   0   0.0 ( 0 )
 نشر من قبل Masaki Tezuka
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a simple quantum generalization of the spectrum of classical Lyapunov exponents. We apply it to the SYK and XXZ models, and study the Lyapunov growth and entropy production. Our numerical results suggest that a black hole is not just the fastest scrambler, but also the fastest entropy generator. We also study the statistical features of the quantum Lyapunov spectrum and find universal random matrix behavior, which resembles the recently-found universality in classical chaos. The random matrix behavior is lost when the system is deformed away from chaos, towards integrability or a many-body localized phase. We propose that quantum systems holographically dual to gravity satisfy this universality in a strong form. We further argue that the quantum Lyapunov spectrum contains important additional information beyond the largest Lyapunov exponent and hence provides us with a better characterization of chaos in quantum systems.



قيم البحث

اقرأ أيضاً

Study of dissipative quantum phase transitions in the Ohmic spin-boson model is numerically challenging in a dense limit of environmental modes. In this work, large-scale numerical simulations are carried out based on the variational principle. The v alidity of variational calculations, spontaneous breakdown of symmetries, and quantum fluctuations and correlations in the Ohmic bath are carefully analyzed, and the critical coupling as well as exponents are accurately determined in the weak tunneling and continuum limits. In addition, quantum criticality of the Ohmic bath is uncovered both in the delocalized phase and at the transition point.
170 - Wen Wei Ho , Soonwon Choi 2021
We present exact results on a novel kind of emergent random matrix universality that quantum many-body systems at infinite temperature can exhibit. Specifically, we consider an ensemble of pure states supported on a small subsystem, generated from pr ojective measurements of the remainder of the system in a local basis. We rigorously show that the ensemble, derived for a class of quantum chaotic systems undergoing quench dynamics, approaches a universal form completely independent of system details: it becomes uniformly distributed in Hilbert space. This goes beyond the standard paradigm of quantum thermalization, which dictates that the subsystem relaxes to an ensemble of quantum states that reproduces the expectation values of local observables in a thermal mixed state. Our results imply more generally that the distribution of quantum states themselves becomes indistinguishable from those of uniformly random ones, i.e. the ensemble forms a quantum state-design in the parlance of quantum information theory. Our work establishes bridges between quantum many-body physics, quantum information and random matrix theory, by showing that pseudo-random states can arise from isolated quantum dynamics, opening up new ways to design applications for quantum state tomography and benchmarking.
156 - S. Diehl , A. Micheli (1 2008
An open quantum system, whose time evolution is governed by a master equation, can be driven into a given pure quantum state by an appropriate design of the system-reservoir coupling. This points out a route towards preparing many body states and non -equilibrium quantum phases by quantum reservoir engineering. Here we discuss in detail the example of a emph{driven dissipative Bose Einstein Condensate} of bosons and of paired fermions, where atoms in an optical lattice are coupled to a bath of Bogoliubov excitations via the atomic current representing emph{local dissipation}. In the absence of interactions the lattice gas is driven into a pure state with long range order. Weak interactions lead to a weakly mixed state, which in 3D can be understood as a depletion of the condensate, and in 1D and 2D exhibits properties reminiscent of a Luttinger liquid or a Kosterlitz-Thouless critical phase at finite temperature, with the role of the ``finite temperature played by the interactions.
To use quantum systems for technological applications we first need to preserve their coherence for macroscopic timescales, even at finite temperature. Quantum error correction has made it possible to actively correct errors that affect a quantum mem ory. An attractive scenario is the construction of passive storage of quantum information with minimal active support. Indeed, passive protection is the basis of robust and scalable classical technology, physically realized in the form of the transistor and the ferromagnetic hard disk. The discovery of an analogous quantum system is a challenging open problem, plagued with a variety of no-go theorems. Several approaches have been devised to overcome these theorems by taking advantage of their loopholes. Here we review the state-of-the-art developments in this field in an informative and pedagogical way. We give the main principles of self-correcting quantum memories and we analyze several milestone examples from the literature of two-, three- and higher-dimensional quantum memories.
The quantum complexity of a unitary operator measures the difficulty of its construction from a set of elementary quantum gates. While the notion of quantum complexity was first introduced as a quantum generalization of the classical computational co mplexity, it has since been argued to hold a fundamental significance in its own right, as a physical quantity analogous to the thermodynamic entropy. In this paper, we present a unified perspective on various notions of quantum complexity, viewed as functions on the space of unitary operators. One striking feature of these functions is that they can exhibit non-smooth and even fractal behaviour. We use ideas from Diophantine approximation theory and sub-Riemannian geometry to rigorously quantify this lack of smoothness. Implications for the physical meaning of quantum complexity are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا