ترغب بنشر مسار تعليمي؟ اضغط هنا

Framed Hitchin Pairs

113   0   0.0 ( 0 )
 نشر من قبل Alexander Schmitt
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English
 تأليف Alexander Schmitt




اسأل ChatGPT حول البحث

We provide a construction of the moduli spaces of framed Hitchin pairs and their master spaces. These objects have come to interest as algebra



قيم البحث

اقرأ أيضاً

Let $X$ be a compact Riemann surface $X$ of genus at--least two. Fix a holomorphic line bundle $L$ over $X$. Let $mathcal M$ be the moduli space of Hitchin pairs $(E ,phiin H^0(End(E)otimes L))$ over $X$ of rank $r$ and fixed determinant of degree $d $. We prove that, for some numerical conditions, $mathcal M$ is irreducible, and that the isomorphism class of the variety $mathcal M$ uniquely determines the isomorphism class of the Riemann surface $X$.
113 - Peter B. Gothen 2016
Hitchin pairs on Riemann surfaces are generalizations of Higgs bundles, allowing the Higgs field to be twisted by an arbitrary line bundle. We consider this generalization in the context of $G$-Higgs bundles for a real reductive Lie group $G$. We out line the basic theory and review some selected results, including recent results by Nozad and the author arXiv:1602.02712 [math.AG] on Hitchin pairs for the unitary group of indefinite signature $mathrm{U}(p,q)$.
A conjectural recursive relation for the Poincare polynomial of the Hitchin moduli space is derived from wallcrossing in the refined local Donaldson-Thomas theory of a curve. A doubly refined generalization of this theory is also conjectured and show n to similarly determine the Hodge polynomial of the same moduli space.
130 - Tamas Hausel 2011
Here we survey several results and conjectures on the cohomology of the total space of the Hitchin system: the moduli space of semi-stable rank n and degree d Higgs bundles on a complex algebraic curve C. The picture emerging is a dynamic mixture of ideas originating in theoretical physics such as gauge theory and mirror symmetry, Weil conjectures in arithmetic algebraic geometry, representation theory of finite groups of Lie type and Langlands duality in number theory.
We give an algebro-geometric construction of the Hitchin connection, valid also in positive characteristic (with a few exceptions). A key ingredient is a substitute for the Narasimhan-Atiyah-Bott Kahler form that realizes the Chern class of the deter minant-of-cohomology line bundle on the moduli space of bundles on a curve. As replacement we use an explicit realisation of the Atiyah class of this line bundle, based on the theory of the trace complex due to Beilinson-Schechtman and Bloch-Esnault.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا