ﻻ يوجد ملخص باللغة العربية
Hitchin pairs on Riemann surfaces are generalizations of Higgs bundles, allowing the Higgs field to be twisted by an arbitrary line bundle. We consider this generalization in the context of $G$-Higgs bundles for a real reductive Lie group $G$. We outline the basic theory and review some selected results, including recent results by Nozad and the author arXiv:1602.02712 [math.AG] on Hitchin pairs for the unitary group of indefinite signature $mathrm{U}(p,q)$.
We provide a construction of the moduli spaces of framed Hitchin pairs and their master spaces. These objects have come to interest as algebra
Let $X$ be a compact Riemann surface $X$ of genus at--least two. Fix a holomorphic line bundle $L$ over $X$. Let $mathcal M$ be the moduli space of Hitchin pairs $(E ,phiin H^0(End(E)otimes L))$ over $X$ of rank $r$ and fixed determinant of degree $d
A conjectural recursive relation for the Poincare polynomial of the Hitchin moduli space is derived from wallcrossing in the refined local Donaldson-Thomas theory of a curve. A doubly refined generalization of this theory is also conjectured and show
For $epsilon$-lc Fano type varieties $X$ of dimension $d$ and a given finite set $Gamma$, we show that there exists a positive integer $m_0$ which only depends on $epsilon,d$ and $Gamma$, such that both $|-mK_X-sum_ilceil mb_irceil B_i|$ and $|-mK_X-
A 1-truncated compact Lie group is any extension of a finite group by a torus. In this note we compute the homotopy types of $Map_*(BG,BH)$, $Map(BG,BH)$, and $Map(EG, B_GH)^G$ for compact Lie groups $G$ and $H$ with $H$ 1-truncated, showing that the