ﻻ يوجد ملخص باللغة العربية
We study a large class of reversible Markov chains with discrete state space and transition matrix $P_N$. We define the notion of a set of {it metastable points} as a subset of the state space $G_N$ such that (i) this set is reached from any point $xin G_N$ without return to x with probability at least $b_N$, while (ii) for any two point x,y in the metastable set, the probability $T^{-1}_{x,y}$ to reach y from x without return to x is smaller than $a_N^{-1}ll b_N$. Under some additional non-degeneracy assumption, we show that in such a situation: item{(i)} To each metastable point corresponds a metastable state, whose mean exit time can be computed precisely. item{(ii)} To each metastable point corresponds one simple eigenvalue of $1-P_N$ which is essentially equal to the inverse mean exit time from this state. The corresponding eigenfunctions are close to the indicator function of the support of the metastable state. Moreover, these results imply very sharp uniform control of the deviation of the probability distribution of metastable exit times from the exponential distribution.
In this letter we announce rigorous results that elucidate the relation between metastable states and low-lying eigenvalues in Markov chains in a much more general setting and with considerable greater precision as was so far available. This includes
In this paper, we develop an in-depth analysis of non-reversible Markov chains on denumerable state space from a similarity orbit perspective. In particular, we study the class of Markov chains whose transition kernel is in the similarity orbit of a
We review recent results on the metastable behavior of continuous-time Markov chains derived through the characterization of Markov chains as unique solutions of martingale problems.
Dealing with finite Markov chains in discrete time, the focus often lies on convergence behavior and one tries to make different copies of the chain meet as fast as possible and then stick together. There is, however, a very peculiar kind of discrete
We introduce the space of virtual Markov chains (VMCs) as a projective limit of the spaces of all finite state space Markov chains (MCs), in the same way that the space of virtual permutations is the projective limit of the spaces of all permutations