ﻻ يوجد ملخص باللغة العربية
In this letter we announce rigorous results that elucidate the relation between metastable states and low-lying eigenvalues in Markov chains in a much more general setting and with considerable greater precision as was so far available. This includes a sharp uncertainty principle relating all low-lying eigenvalues to mean times of metastable transitions, a relation between the support of eigenfunctions and the attractor of a metastable state, and sharp estimates on the convergence of probability distribution of the metastable transition times to the exponential distribution.
We study a large class of reversible Markov chains with discrete state space and transition matrix $P_N$. We define the notion of a set of {it metastable points} as a subset of the state space $G_N$ such that (i) this set is reached from any point $x
We study a class of Markov chains that describe reversible stochastic dynamics of a large class of disordered mean field models at low temperatures. Our main purpose is to give a precise relation between the metastable time scales in the problem to t
Quasiperiodic systems are aperiodic but deterministic, so their critical behavior differs from that of clean systems as well as disordered ones. Quasiperiodic criticality was previously understood only in the special limit where the couplings follow
Using strong-disorder renormalization group, numerical exact diagonalization, and quantum Monte Carlo methods, we revisit the random antiferromagnetic XXZ spin-1/2 chain focusing on the long-length and ground-state behavior of the average time-indepe