ﻻ يوجد ملخص باللغة العربية
We propose a suitable formulation of the Hamiltonian formalism for Field Theory in terms of Hamiltonian connections and multisymplectic forms where a composite fibered bundle, involving a line bundle, plays the role of an extended configuration bundle. This new approach can be interpreted as a suitable generalization to Field Theory of the homogeneous formalism for Hamiltonian Mechanics. As an example of application, we obtain the expression of a formal energy for a parametrized version of the Hilbert--Einstein Lagrangian and we show that this quantity is conserved.
This paper undertakes a study of the nature of the force associated with the local U (1) gauge symmetry of a non-relativistic quantum particle. To ensure invariance under local U (1) symmetry, a matter field must couple to a gauge field. We show that
In this article we describe the relation between the Chern-Simons gauge theory partition function and the partition function defined using the symplectic action functional as the Lagrangian. We show that the partition functions obtained using these t
We continue to study doubled aspects of algebroid structures equipped with the C-bracket in double field theory (DFT). We find that a family of algebroids, the Vaisman (metric or pre-DFT), the pre- and the ante-Courant algebroids are constructed by t
The construction of the information capacity for the vector position parameter in the Minkowskian space-time is presented. This lays the statistical foundations of the kinematical term of the Lagrangian of the physical action for many field theory mo
We construct examples of Functorial Quantum Field Theories in the Riemannian setting by quantizing free massive bosons.