ترغب بنشر مسار تعليمي؟ اضغط هنا

Irreducible bilinear tensorial concomitants of an arbitrary complex bivector

166   0   0.0 ( 0 )
 نشر من قبل Tobia Carozzi
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Irreducible bilinear tensorial concomitants of an arbitrary complex antisymmetric valence-2 tensor are derived in four-dimensional spacetime. In addition these bilinear concomitants are symmetric (or antisymmetric), self-dual (or anti-self-dual), and hermitian forms in the antisymmetric tensor. An important example of an antisymmetric valence-2 tensor, or bivector, is the electromagnetic field strength tensor which ordinarily is taken to be real-valued. In generalizing to complex-valued bivectors, the authors find the hermitian fo



قيم البحث

اقرأ أيضاً

In this paper, we present an eleven invariant isotropic irreducible function basis of a third order three-dimensional symmetric tensor. This irreducible function basis is a proper subset of the Olive-Auffray minimal isotropic integrity basis of that tensor. The octic invariant and a sextic invariant in the Olive-Auffray integrity basis are dropped out. This result is of significance to the further research of irreducible function bases of higher order tensors.
195 - Da Xu , Palle Jorgensen 2010
This paper is concerned with integrals which integrands are the monomials of matrix elements of irreducible representations of classical groups. Based on analysis on Young tableaux, we discuss some related duality theorems and compute the asymptotics of the group integrals when the signatures of the irreducible representations are fixed, as the rank of the classical groups go to infinity. These group integrals have physical origins in quantum mechanics, quantum information theory, and lattice Gauge theory.
Birkhoffs theorem tells that any doubly stochastic matrix can be decomposed as a weighted sum of permutation matrices. A similar theorem reveals that any unitary matrix can be decomposed as a weighted sum of complex permutation matrices. Unitary matr ices of dimension equal to a power of~2 (say $2^w$) deserve special attention, as they represent quantum qubit circuits. We investigate which subgroup of the signed permutation matrices suffices to decompose an arbitrary such matrix. It turns out to be a matrix group isomorphic to the extraspecial group {bf E}$_{2^{2w+1}}^+$ of order $2^{2w+1}$. An associated projective group of order $2^{2w}$ equally suffices.
It was shown recently that Birkhoffs theorem for doubly stochastic matrices can be extended to unitary matrices with equal line sums whenever the dimension of the matrices is prime. We prove a generalization of the Birkhoff theorem for unitary matrices with equal line sums for arbitrary dimension.
In 2017, Lienert and Tumulka proved Borns rule on arbitrary Cauchy surfaces in Minkowski space-time assuming Borns rule and a corresponding collapse rule on horizontal surfaces relative to a fixed Lorentz frame, as well as a given unitary time evolut ion between any two Cauchy surfaces. Here, we prove Borns rule on arbitrary Cauchy surfaces from a different, but equally reasonable, set of assumptions. The conclusion is that if detectors are placed along any Cauchy surface $Sigma$, then the observed particle configuration on $Sigma$ has distribution $|Psi_Sigma|^2$, suitably understood. The main different assumption is that the Born and collapse rules hold on any spacelike hyperplane, i.e., at any time coordinate in any Lorentz frame. Heuristically, this follows if the dynamics of the detectors is Lorentz invariant. In addition, we assume, as did Lienert and Tumulka, that there is no interaction faster than light and that there is no propagation faster than light.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا