ترغب بنشر مسار تعليمي؟ اضغط هنا

The scaling limit of two cluster boundaries in critical lattice models

71   0   0.0 ( 0 )
 نشر من قبل Adam Gamsa
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The probability that a point is to one side of a curve in Schramm-Loewner evolution (SLE) can be obtained alternatively using boundary conformal field theory (BCFT). We extend the BCFT approach to treat two curves, forming, for example, the left and right boundaries of a cluster. This proves to correspond to a generalisation to SLE(kappa,rho), with rho=2. We derive the probabilities that a given point lies between two curves or to one side of both. We find analytic solutions for the cases kappa=0,2,4,8/3,8. The result for kappa=6 leads to predictions for the current distribution at the plateau transition in the semiclassical approximation to the quantum Hall effect.

قيم البحث

اقرأ أيضاً

80 - Alfred Hucht 2017
Based on the results published recently [J. Phys. A: Math. Theor. 50, 065201 (2017)], the universal finite-size contributions to the free energy of the square lattice Ising model on the $Ltimes M$ rectangle, with open boundary conditions in both dire ctions, are calculated exactly in the finite-size scaling limit $L,Mtoinfty$, $Tto T_mathrm{c}$, with fixed temperature scaling variable $xpropto(T/T_mathrm{c}-1)M$ and fixed aspect ratio $rhopropto L/M$. We derive exponentially fast converging series for the related Casimir potential and Casimir force scaling functions. At the critical point $T=T_mathrm{c}$ we confirm predictions from conformal field theory by Cardy & Peschel [Nucl. Phys. B 300, 377 (1988)] and by Kleban & Vassileva [J. Phys. A: Math. Gen. 24, 3407 (1991)]. The presence of corners and the related corner free energy has dramatic impact on the Casimir scaling functions and leads to a logarithmic divergence of the Casimir potential scaling function at criticality.
123 - M.T. Batchelor 2002
The problem of a random walk on a finite triangular lattice with a single interior source point and zig-zag absorbing boundaries is solved exactly. This problem has been previously considered intractable.
We discuss spin models on complete graphs in the mean-field (infinite-vertex) limit, especially the classical XY model, the Toy model of the Higgs sector, and related generalizations. We present a number of results coming from the theory of large dev iations and Steins method, in particular, Cramer and Sanov-type results, limit theorems with rates of convergence, and phase transition behavior for these models.
97 - Vieri Mastropietro 2020
In planar lattice statistical mechanics models like coupled Ising with quartic interactions, vertex and dimer models, the exponents depend on all the Hamiltonian details. This corresponds, in the Renormalization Group language, to a line of fixed poi nts. A form of universality is expected to hold, implying that all the exponents can be expressed by exact Kadanoff relations in terms of a single one of them. This conjecture has been recently established and we review here the key step of the proof, obtained by rigorous Renormalization Group methods and valid irrespectively on the solvability of the model. The exponents are expressed by convergent series in the coupling and, thanks to a set of cancellations due to emerging chiral symmetries, the extended scaling relations are proven to be true.
In bootstrap percolation it is known that the critical percolation threshold tends to converge slowly to zero with increasing system size, or, inversely, the critical size diverges fast when the percolation probability goes to zero. To obtain higher- order terms (that is, sharp and sharper thresholds) for the percolation threshold in general is a hard question. In the case of two-dimensional anisotropic models, sometimes correction terms can be obtained from inversion in a relatively simple manner.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا