ترغب بنشر مسار تعليمي؟ اضغط هنا

Universality for critical lines for Ising, Vertex and Dimer models

98   0   0.0 ( 0 )
 نشر من قبل Vieri Mastropietro
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In planar lattice statistical mechanics models like coupled Ising with quartic interactions, vertex and dimer models, the exponents depend on all the Hamiltonian details. This corresponds, in the Renormalization Group language, to a line of fixed points. A form of universality is expected to hold, implying that all the exponents can be expressed by exact Kadanoff relations in terms of a single one of them. This conjecture has been recently established and we review here the key step of the proof, obtained by rigorous Renormalization Group methods and valid irrespectively on the solvability of the model. The exponents are expressed by convergent series in the coupling and, thanks to a set of cancellations due to emerging chiral symmetries, the extended scaling relations are proven to be true.



قيم البحث

اقرأ أيضاً

In this paper, we investigate the behaviour of statistical physics models on a book with pages that are isomorphic to half-planes. We show that even for models undergoing a continuous phase transition on $mathbb Z^2$, the phase transition becomes dis continuous as soon as the number of pages is sufficiently large. In particular, we prove that the Ising model on a three pages book has a discontinuous phase transition (if one allows oneself to consider large coupling constants along the line on which pages are glued). Our work confirms predictions in theoretical physics which relied on renormalization group, conformal field theory and numerics ([Car91,ITB91,SMP10]) some of which were motivated by the analysis of the Renyi entropy of certain quantum spin systems.
Inspired by Fr{o}hlich-Spencer and subsequent authors who introduced the notion of contour for long-range systems, we provide a definition of contour and a direct proof for the phase transition for ferromagnetic long-range Ising models on $mathbb{Z}^ d$, $dgeq 2$. The argument, which is based on a multi-scale analysis, works for the sharp region $alpha>d$ and improves previous results obtained by Park for $alpha>3d+1$, and by Ginibre, Grossmann, and Ruelle for $alpha> d+1$, where $alpha$ is the power of the coupling constant. The key idea is to avoid a large number of small contours. As an application, we prove the persistence of the phase transition when we add a polynomial decaying magnetic field with power $delta>0$ as $h^*|x|^{-delta}$, where $h^* >0$. For $d<alpha<d+1$, the phase transition occurs when $delta>d-alpha$, and when $h^*$ is small enough over the critical line $delta=d-alpha$. For $alpha geq d+1$, $delta>1$ it is enough to prove the phase transition, and for $delta=1$ we have to ask $h^*$ small. The natural conjecture is that this region is also sharp for the phase transition problem when we have a decaying field.
We obtain long series expansions for the bulk, surface and corner free energies for several two-dimensional statistical models, by combining Entings finite lattice method (FLM) with exact transfer matrix enumerations. The models encompass all integra ble curves of the Q-state Potts model on the square and triangular lattices, including the antiferromagnetic transition curves and the Ising model (Q=2) at temperature T, as well as a fully-packed O(n) type loop model on the square lattice. The expansions are around the trivial fixed points at infinite Q, n or 1/T. By using a carefully chosen expansion parameter, q << 1, all expansions turn out to be of the form prod_{k=1}^infty (1-q^k)^{alpha_k + k beta_k}, where the coefficients alpha_k and beta_k are periodic functions of k. Thanks to this periodicity property we can conjecture the form of the expansions to all orders (except in a few cases where the periodicity is too large). These expressions are then valid for all 0 <= q < 1. We analyse in detail the q to 1^- limit in which the models become critical. In this limit the divergence of the corner free energy defines a universal term which can be compared with the conformal field theory (CFT) predictions of Cardy and Peschel. This allows us to deduce the asymptotic expressions for the correlation length in several cases. Finally we work out the FLM formulae for the case where some of the systems boundaries are endowed with particular (non-free) boundary conditions. We apply this in particular to the square-lattice Potts model with Jacobsen-Saleur boundary conditions, conjecturing the expansions of the surface and corner free energies to arbitrary order for any integer value of the boundary interaction parameter r. These results are in turn compared with CFT predictions.
We discuss spin models on complete graphs in the mean-field (infinite-vertex) limit, especially the classical XY model, the Toy model of the Higgs sector, and related generalizations. We present a number of results coming from the theory of large dev iations and Steins method, in particular, Cramer and Sanov-type results, limit theorems with rates of convergence, and phase transition behavior for these models.
70 - Adam Gamsa , John Cardy 2005
The probability that a point is to one side of a curve in Schramm-Loewner evolution (SLE) can be obtained alternatively using boundary conformal field theory (BCFT). We extend the BCFT approach to treat two curves, forming, for example, the left and right boundaries of a cluster. This proves to correspond to a generalisation to SLE(kappa,rho), with rho=2. We derive the probabilities that a given point lies between two curves or to one side of both. We find analytic solutions for the cases kappa=0,2,4,8/3,8. The result for kappa=6 leads to predictions for the current distribution at the plateau transition in the semiclassical approximation to the quantum Hall effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا