ترغب بنشر مسار تعليمي؟ اضغط هنا

The universal chiral partition function for exclusion statistics

49   0   0.0 ( 0 )
 نشر من قبل Barry McCoy
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the equality between the universal chiral partition function, which was first found in the context of conformal field theory and Rogers-Ramanujan identities, and the exclusion statistics introduced by Haldane in the study of the fractional quantum Hall effect. The phenomena of multiple representations of the same conformal field theory by different sets of exclusion statistics is discussed in the context of the ${hat u}(1)$ theory of a compactified boson of radius $R.$

قيم البحث

اقرأ أيضاً

We evaluate the mixed partition function for dyonic BPS black holes using the recently proposed degeneracy formula for the STU model. The result factorizes into the OSV mixed partition function times a proportionality factor. The latter is in agreeme nt with the measure factor that was recently conjectured for a class of N=2 black holes that contains the STU model.
We use localization to compute the partition function of a four dimensional, supersymmetric, abelian gauge theory on a hemisphere coupled to charged matter on the boundary. Our theory has eight real supercharges in the bulk of which four are broken b y the presence of the boundary. The main result is that the partition function is identical to that of ${mathcal N}=2$ abelian Chern-Simons theory on a three-sphere coupled to chiral multiplets, but where the quantized Chern-Simons level is replaced by an arbitrary complexified gauge coupling $tau$. The localization reduces the path integral to a single ordinary integral over a real variable. This integral in turn allows us to calculate the scaling dimensions of certain protected operators and two-point functions of abelian symmetry currents at arbitrary values of $tau$. Because the underlying theory has conformal symmetry, the current two-point functions tell us the zero temperature conductivity of the Lorentzi
147 - Daniel C. Cabra 1992
We construct the Zamolodchikovs c-function for the Chiral Gross-Neveu Model up to two loops. We show that the c-function interpolates between the two known critical points of the theory, it is stationary at them and it decreases with the running coup ling constant. In particular one can infer the non-existence of additional critical points in the region under investigation.
We study properties of the full partition function for the $U(1)$ 5D $mathcal{N}=2^*$ gauge theory with adjoint hypermultiplet of mass $M$. This theory is ultimately related to abelian 6D (2,0) theory. We construct the full non-perturbative partition function on toric Sasaki-Einstein manifolds by gluing flat copies of the Nekrasov partition function and we express the full partition function in terms of the generalized double elliptic gamma function $G_2^C$ associated with a certain moment map cone $C$. The answer exhibits a curious $SL(4,mathbb{Z})$ modular property. Finally, we propose a set of rules to construct the partition function that resembles the calculation of 5D supersymmetric partition function with the insertion of defects of various co-dimensions.
Particle production in high-energy collisions is often addressed within the framework of the thermal (statistical) model. We present a method to calculate the canonical partition function for the hadron resonance gas with exact conservation of the ba ryon number, strangeness, electric charge, charmness and bottomness. We derive an analytical expression for the partition function which is represented as series of Bessel functions. Our results can be used directly to analyze particle production yields in elementary and in heavy ion collisions. We also quantify the importance of quantum statistics in the calculations of the light particle multiplicities in the canonical thermal model of the hadron resonance gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا