ترغب بنشر مسار تعليمي؟ اضغط هنا

Modular properties of full 5D SYM partition function

102   0   0.0 ( 0 )
 نشر من قبل Maxim Zabzine
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study properties of the full partition function for the $U(1)$ 5D $mathcal{N}=2^*$ gauge theory with adjoint hypermultiplet of mass $M$. This theory is ultimately related to abelian 6D (2,0) theory. We construct the full non-perturbative partition function on toric Sasaki-Einstein manifolds by gluing flat copies of the Nekrasov partition function and we express the full partition function in terms of the generalized double elliptic gamma function $G_2^C$ associated with a certain moment map cone $C$. The answer exhibits a curious $SL(4,mathbb{Z})$ modular property. Finally, we propose a set of rules to construct the partition function that resembles the calculation of 5D supersymmetric partition function with the insertion of defects of various co-dimensions.



قيم البحث

اقرأ أيضاً

We develop an efficient method to compute the torus partition function of the six-vertex model exactly for finite lattice size. The method is based on the algebro-geometric approach to the resolution of Bethe ansatz equations initiated in a previous work, and on further ingredients introduced in the present paper. The latter include rational $Q$-system, primary decomposition, algebraic extension and Galois theory. Using this approach, we probe new structures in the solution space of the Bethe ansatz equations which enable us to boost the efficiency of the computation. As an application, we study the zeros of the partition function in a partial thermodynamic limit of $M times N$ tori with $N gg M$. We observe that for $N to infty$ the zeros accumulate on some curves and give a numerical method to generate the curves of accumulation points.
304 - Xiaobin Li , Futoshi Yagi 2021
In this paper, we study 5d $mathcal{N}=1$ $Sp(N)$ gauge theory with $N_f ( leq 2N + 3 )$ flavors based on 5-brane web diagram with $O5$-plane. On the one hand, we discuss Seiberg-Witten curve based on the dual graph of the 5-brane web with $O5$-plane . On the other hand, we compute the Nekrasov partition function based on the topological vertex formalism with $O5$-plane. Rewriting it in terms of profile functions, we obtain the saddle point equation for the profile function after taking thermodynamic limit. By introducing the resolvent, we derive the Seiberg-Witten curve and its boundary conditions as well as its relation to the prepotential in terms of the cycle integrals. They coincide with those directly obtained from the dual graph of the 5-brane web with $O5$-plane. This agreement gives further evidence for mirror symmetry which relates Nekrasov partition function with Seiberg-Witten curve in the case with orientifold plane and shed light on the non-toric Calabi-Yau 3-folds including D-type singularities.
We propose a set of novel expansions of Nekrasovs instanton partition functions. Focusing on 5d supersymmetric pure Yang-Mills theory with unitary gauge group on $mathbb{C}^2_{q,t^{-1}} times mathbb{S}^1$, we show that the instanton partition functio n admits expansions in terms of partition functions of unitary gauge theories living on the 3d subspaces $mathbb{C}_{q} times mathbb{S}^1$, $mathbb{C}_{t^{-1}} times mathbb{S}^1$ and their intersection along $mathbb{S}^1$. These new expansions are natural from the BPS/CFT viewpoint, as they can be matched with $W_{q,t}$ correlators involving an arbitrary number of screening charges of two kinds. Our constructions generalize and interpolate existing results in the literature.
We derive the partition function of 5d ${cal N}=1$ gauge theories on the manifold $S^3_b times Sigma_{frak g}$ with a partial topological twist along the Riemann surface, $Sigma_{frak g}$. This setup is a higher dimensional uplift of the two-dimensio nal A-twist, and the result can be expressed as a sum over solutions of Bethe-Ansatz-type equations, with the computation receiving nontrivial non-perturbative contributions. We study this partition function in the large $N$ limit, where it is related to holographic RG flows between asymptotically locally AdS$_6$ and AdS$_4$ spacetimes, reproducing known holographic relations between the corresponding free energies on $S^{5}$ and $S^{3}$ and predicting new ones. We also consider cases where the 5d theory admits a UV completion as a 6d SCFT, such as the maximally supersymmetric ${cal N}=2$ Yang-Mills theory, in which case the partition function computes the 4d index of general class ${cal S}$ theories, which we verify in certain simplifying limits. Finally, we comment on the generalization to ${cal M}_3 times Sigma_{frak g}$ with more general three-manifolds ${cal M}_3$ and focus in particular on ${cal M}_3=Sigma_{frak g}times S^{1}$, in which case the partition function relates to the entropy of black holes in AdS$_6$.
In earlier work we studied features of non-holomorphic modular functions associated with Feynman graphs for a conformal scalar field theory on a two-dimensional torus with zero external momenta at all vertices. Such functions, which we will refer to as modular graph functions, arise, for example, in the low energy expansion of genus-one Type II superstring amplitudes. We here introduce a class of single-valued elliptic multiple polylogarithms, which are defined as elliptic functions associated with Feynman graphs with vanishing external momenta at all but two vertices. These functions depend on a coordinate, $zeta$, on the elliptic curve and reduce to modular graph functions when $zeta$ is set equal to $1$. We demonstrate that these single-valued elliptic multiple polylogarithms are linear combinations of multiple polylogarithms, and that modular graph functions are sums of single-valued elliptic multiple polylogarithms evaluated at the identity of the elliptic curve, in both cases with rational coefficients. This insight suggests the many interrelations between modular graph functions (a few of which were established in earlier papers) may be obtained as a consequence of identities involving multiple polylogarithms, and explains an earlier observation that the coefficients of the Laurent polynomial at the cusp are given by rational numbers times single-valued multiple zeta values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا