ﻻ يوجد ملخص باللغة العربية
The formal extension of the T-duality rules for open strings from Abelian to non-Abelian gauge field background leads in a well known manner to the notion of matrix valued D-brane position. The application of this concept to the non-Abelian gauge field RG $beta $-function of the corresponding $sigma $-model yields a mass term in the gauge field dynamics on the matrix D-brane. The direct calculation in a corresponding D-brane model does $not$ yield such a mass term, if the Dirichlet boundary condition is implemented as a constraint on the integrand in the defining functional integral. However, the mass term arises in the direct calculation for a D-brane model with dynamically realized boundary condition.
We construct a calculational scheme for handling the matrix ordering problems connected with the appearance of D-brane positions taking values in the same Lie algebra as the nonabelian gauge field living on the D-brane. The formalism is based on the
We discuss T-duality for open strings in general background fields both in the functional integral formulation as well as in the language of canonical transformations. The Dirichlet boundary condition in the dual theory has to be treated as a constra
We exhibit exact conformal field theory descriptions of SO(N) and Sp(N) pairs of Seiberg-dual gauge theories within string theory. The N=1 gauge theories with flavour are realized as low energy limits of the worldvolume theories on D-branes in unorie
Closed string field theory is constructed by stochastically quantizing a matrix model for Polyakov loops that describes phases of a large N gauge theory at finite temperature. Coherent states in this string field theory describes winding string conde
We study at the classical and quantum mechanical level the time-dependent Yang-Mills theory that one obtains via the generalisation of discrete light-cone quantisation to singular homogeneous plane waves. The non-Abelian nature of this theory is know