ترغب بنشر مسار تعليمي؟ اضغط هنا

The non-Abelian gauge theory of matrix big bangs

140   0   0.0 ( 0 )
 نشر من قبل Martin O'Loughlin
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study at the classical and quantum mechanical level the time-dependent Yang-Mills theory that one obtains via the generalisation of discrete light-cone quantisation to singular homogeneous plane waves. The non-Abelian nature of this theory is known to be important for physics near the singularity, at least as far as the number of degrees of freedom is concerned. We will show that the quartic interaction is always subleading as one approaches the singularity and that close enough to t=0 the evolution is driven by the diverging tachyonic mass term. The evolution towards asymptotically flat space-time also reveals some surprising features.



قيم البحث

اقرأ أيضاً

Basis tensor gauge theory is a vierbein analog reformulation of ordinary gauge theories in which the difference of local field degrees of freedom has the interpretation of an object similar to a Wilson line. Here we present a non-Abelian basis tensor gauge theory formalism. Unlike in the Abelian case, the map between the ordinary gauge field and the basis tensor gauge field is nonlinear. To test the formalism, we compute the beta function and the two-point function at the one-loop level in non-Abelian basis tensor gauge theory and show that it reproduces the well-known results from the usual formulation of non-Abelian gauge theory.
Non-Abelian gauge theories with composite fields are examined in the background field method. Generating functionals of Greens functions for a Yang--Mills theory with composite and background fields are introduced, including the generating functional of vertex Greens functions (effective action). The corresponding Ward identities are obtained, and the issue of gauge dependence is investigated. A gauge variation of the effective action is found in terms of a nilpotent operator depending on the composite and background fields. On-shell independence from the choice of gauge fixing for the effective action is established. In the study of the Ward identities and gauge dependence, finite field-dependent BRST transformations with a background field are introduced and utilized on a systematic basis. On the one hand, this involves the consideration of (modified) Ward identities with a field-dependent anticommuting parameter, also depending on a non-trivial background. On the other hand, the issue of gauge dependence is studied with reference to a finite variation of the gauge Fermion. The concept of a joint introduction of composite and background fields to non-Abelian gauge theories is exemplified by the Gribov--Zwanziger theory and by the Volovich--Katanaev model of two-dimensional gravity with dynamical torsion.
68 - Peter Schupp 2001
We present a brief introduction to the construction of gauge theories on noncommutative spaces with star products. Particular emphasis is given to issues related to non-Abelian gauge groups and charge quantization. This talk is based on joined work w ith B. Jurco, J. Madore, L. Moeller, S. Schraml and J. Wess.
100 - F.R. Klinkhamer 2020
The large-$N$ master field of the Lorentzian IIB matrix model can, in principle, give rise to a particular degenerate metric relevant to a regularized big bang. The length parameter of this degenerate metric is then calculated in terms of the IIB-matrix-model length scale.
Holographic theories with classical gravity duals are maximally chaotic: they saturate a set of bounds on the spread of quantum information. In this paper we question whether non-locality can affect such bounds. Specifically, we consider the gravity dual of a prototypical theory with non-local interactions, namely, $mathcal{N}=4$ non-commutative super Yang Mills. We construct shock waves geometries that correspond to perturbations of the thermofield double state with definite momentum and study several chaos related properties of the theory, including the butterfly velocity, the entanglement velocity, the scrambling time and the maximal Lyapunov exponent. The latter two are unaffected by the non-commutative parameter $theta$, however, both the butterfly and entanglement velocities increase with the strength of the non-commutativity. This implies that non-local interactions can enhance the effective light-cone for the transfer of quantum information, eluding previously conjectured bounds encountered in the context of local quantum field theory. We comment on a possible limitation on the retrieval of quantum information imposed by non-locality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا