ﻻ يوجد ملخص باللغة العربية
We prove the Polyakov conjecture on the supertorus $(ST_2)$: we dermine an iterative solution at any order of the superconformal Ward identity and we show that this solution is resumed by the Wess-Zumino-Polyakov (WZP) action that describes the $(1,0)$ 2D-supergravity. The resolution of the superBeltrami equation for the Wess-Zumino (WZ) field is done by using on the one hand the Cauchy kernel defined on $ST_2$ and on the other hand, the formalism developed to get the general solution on the supercomplex plane. Hence, we determine the n-points Green functions from the (WZP) action expressed in terms of the (WZ) field.
In this work we present a closed form expression for Polyakov blocks in Mellin space for arbitrary spin and scaling dimensions. We provide a prescription to fix the contact term ambiguity uniquely by reducing the problem to that of fixing the contact
We consider pure Yang Mills theory on the four torus. A set of non-Abelian transition functions is presented which encompass all instanton sectors. It is argued that these transition functions are a convenient starting point for gauge fixing. In part
In two dimensional conformal field theory the generating functional for correlators of the stress-energy tensor is given by the non-local Polyakov action associated with the background geometry. We study this functional holographically by calculating
I conjecture an upper bound on the number of possible swampland conjectures by comparing the entropy required by the conjectures themselves to the Beckenstein-Hawking entropy of the cosmological horizon. Assuming of order 100 kilobits of entropy per
We consider finite temperature SU(2) gauge theory in the continuum formulation, which necessitates the choice of a gauge fixing. Choosing the Landau gauge, the existing gauge copies are taken into account by means of the Gribov-Zwanziger (GZ) quantiz