ﻻ يوجد ملخص باللغة العربية
In this work we present a closed form expression for Polyakov blocks in Mellin space for arbitrary spin and scaling dimensions. We provide a prescription to fix the contact term ambiguity uniquely by reducing the problem to that of fixing the contact term ambiguity at the level of cyclic exchange amplitudes -- defining cyclic Polyakov blocks -- in terms of which any fully crossing symmetric correlator can be decomposed. We also give another, equivalent, prescription which does not rely on a decomposition into cyclic amplitudes and we underline the relation between cyclic amplitudes and dispersion relations in Mellin space. We extract the OPE data of double-twist operators in the direct channel expansion of the cyclic Polyakov blocks using and extending the analysis of cite{Sleight:2018epi,Sleight:2018ryu} to include contributions that are non-analytic in spin. The relation between cyclic Polyakov blocks and analytic Bootstrap functionals is underlined.
In two dimensional conformal field theory the generating functional for correlators of the stress-energy tensor is given by the non-local Polyakov action associated with the background geometry. We study this functional holographically by calculating
We prove the Polyakov conjecture on the supertorus $(ST_2)$: we dermine an iterative solution at any order of the superconformal Ward identity and we show that this solution is resumed by the Wess-Zumino-Polyakov (WZP) action that describes the $(1,0
For conformal field theories in arbitrary dimensions, we introduce a method to derive the conformal blocks corresponding to the exchange of a traceless symmetric tensor appearing in four point functions of operators with spin. Using the embedding spa
We give a simple iterative procedure to compute the classical conformal blocks on the sphere to all order in the modulus.
We compute the conformal blocks associated with scalar-scalar-fermion-fermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called `seed blocks in three dimensions.