ترغب بنشر مسار تعليمي؟ اضغط هنا

The Unique Polyakov Blocks

64   0   0.0 ( 0 )
 نشر من قبل Massimo Taronna
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we present a closed form expression for Polyakov blocks in Mellin space for arbitrary spin and scaling dimensions. We provide a prescription to fix the contact term ambiguity uniquely by reducing the problem to that of fixing the contact term ambiguity at the level of cyclic exchange amplitudes -- defining cyclic Polyakov blocks -- in terms of which any fully crossing symmetric correlator can be decomposed. We also give another, equivalent, prescription which does not rely on a decomposition into cyclic amplitudes and we underline the relation between cyclic amplitudes and dispersion relations in Mellin space. We extract the OPE data of double-twist operators in the direct channel expansion of the cyclic Polyakov blocks using and extending the analysis of cite{Sleight:2018epi,Sleight:2018ryu} to include contributions that are non-analytic in spin. The relation between cyclic Polyakov blocks and analytic Bootstrap functionals is underlined.



قيم البحث

اقرأ أيضاً

213 - M. Banados , O. Chandia , A. Ritz 2002
In two dimensional conformal field theory the generating functional for correlators of the stress-energy tensor is given by the non-local Polyakov action associated with the background geometry. We study this functional holographically by calculating the regularized on-shell action of asymptotically AdS gravity in three dimensions, associated with a specified (but arbitrary) boundary metric. This procedure is simplified by making use of the Chern-Simons formulation, and a corresponding first-order expansion of the bulk dreibein, rather than the metric expansion of Fefferman and Graham. The dependence of the resulting functional on local moduli of the boundary metric agrees precisely with the Polyakov action, in accord with the AdS/CFT correspondence. We also verify the consistency of this result with regard to the nontrivial transformation properties of bulk solutions under Brown-Henneaux diffeomorphisms.
125 - M. Kachkachi , M. Nazah 1997
We prove the Polyakov conjecture on the supertorus $(ST_2)$: we dermine an iterative solution at any order of the superconformal Ward identity and we show that this solution is resumed by the Wess-Zumino-Polyakov (WZP) action that describes the $(1,0 )$ 2D-supergravity. The resolution of the superBeltrami equation for the Wess-Zumino (WZ) field is done by using on the one hand the Cauchy kernel defined on $ST_2$ and on the other hand, the formalism developed to get the general solution on the supercomplex plane. Hence, we determine the n-points Green functions from the (WZP) action expressed in terms of the (WZ) field.
For conformal field theories in arbitrary dimensions, we introduce a method to derive the conformal blocks corresponding to the exchange of a traceless symmetric tensor appearing in four point functions of operators with spin. Using the embedding spa ce formalism, we show that one can express all such conformal blocks in terms of simple differential operators acting on the basic scalar conformal blocks. This method gives all conformal blocks for conformal field theories in three dimensions. We demonstrate how this formalism can be applied in a few simple examples.
105 - Pietro Menotti 2016
We give a simple iterative procedure to compute the classical conformal blocks on the sphere to all order in the modulus.
We compute the conformal blocks associated with scalar-scalar-fermion-fermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called `seed blocks in three dimensions. Conformal blocks associated with 4-point functions of operators with arbitrary spins can now be determined from these seed blocks by using known differential operators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا