ﻻ يوجد ملخص باللغة العربية
The Connes and Lott reformulation of the strong and electroweak model represents a promising application of noncommutative geometry. In this scheme the Higgs field naturally appears in the theory as a particular `gauge boson, connected to the discrete internal space, and its quartic potential, fixed by the model, is not vanishing only when more than one fermion generation is present. Moreover, the exact hypercharge assignments and relations among the masses of particles have been obtained. This paper analyzes the possibility of extensions of this model to larger unified gauge groups. Noncommutative geometry imposes very stringent constraints on the possible theories, and remarkably, the analysis seems to suggest that no larger gauge groups are compatible with the noncommutative structure, unless one enlarges the fermionic degrees of freedom, namely the number of particles.
I review results from recent investigations of anomalies in fermion--Yang Mills systems in which basic notions from noncommutative geometry (NCG) where found to naturally appear. The general theme is that derivations of anomalies from quantum field t
We calculate conformal anomalies in noncommutative gauge theories by using the path integral method (Fujikawas method). Along with the axial anomalies and chiral gauge anomalies, conformal anomalies take the form of the straightforward Moyal deformat
In this paper we study the structure of the Hilbert space for the recent noncommutative geometry models of gauge theories. We point out the presence of unphysical degrees of freedom similar to the ones appearing in lattice gauge theories (fermion dou
In this note we discuss local gauge-invariant operators in noncommutative gauge theories. Inspired by the connection of these theories with the Matrix model, we give a simple construction of a complete set of gauge-invariant operators. We make connec
The relation between the trace and R-current anomalies in supersymmetric theories implies that the U$(1)_RF^2$, U$(1)_R$ and U$(1)_R^3$ anomalies which are matched in studies of N=1 Seiberg duality satisfy positivity constraints. Some constraints are