ﻻ يوجد ملخص باللغة العربية
In a recent paper, the authors have shown that the secondary reduction of W-algebras provides a natural framework for the linearization of W-algebras. In particular, it allows in a very simple way the calculation of the linear algebra $W(G,H)_{geq0}$ associated to a wide class of W(G,H) algebras, as well as the expression of the W generators of W(G,H) in terms of the generators of $W(G,H)_{geq0}$. In this paper, we present the extension of the above technique to W-superalgebras, i.e. W-algebras containing fermions and bosons of arbitrary (positive) spins. To be self-contained the paper recall the linearization of W-algebras. We include also examples such as the linearization of W_n algebras; W(sl(3|1),sl(3)) and W(osp(1|4),sp(4)) = WB_2 superalgebras.
We show that quantum Casimir W-algebras truncate at degenerate values of the central charge c to a smaller algebra if the rank is high enough: Choosing a suitable parametrization of the central charge in terms of the rank of the underlying simple Lie
Recently it has been discovered that the W-algebras (orbifold of) WD_n can be defined even for negative integers n by an analytic continuation of their coupling constants. In this letter we shall argue that also the algebras WA_{-n-1} can be defined
Sets of commuting charges constructed from the current of a U(1) Kac-Moody algebra are found. There exists a set S_n of such charges for each positive integer n > 1; the corresponding value of the central charge in the Feigin-Fuchs realization of the
We construct several quantum coset W-algebras, e.g. sl(2,R)/U(1) and sl(2,R)+sl(2,R) / sl(2,R), and argue that they are finitely nonfreely generated. Furthermore, we discuss in detail their role as unifying W-algebras of Casimir W-algebras. We show t
In this note, using Nekrasovs gauge origami framework, we study two differe