ﻻ يوجد ملخص باللغة العربية
Recently it has been discovered that the W-algebras (orbifold of) WD_n can be defined even for negative integers n by an analytic continuation of their coupling constants. In this letter we shall argue that also the algebras WA_{-n-1} can be defined and are finitely generated. In addition, we show that a surprising connection exists between already known W-algebras, for example between the CP(k)-models and the U(1)-cosets of the generalized Polyakov-Bershadsky-algebras.
In a recent paper, the authors have shown that the secondary reduction of W-algebras provides a natural framework for the linearization of W-algebras. In particular, it allows in a very simple way the calculation of the linear algebra $W(G,H)_{geq0}$
We show that quantum Casimir W-algebras truncate at degenerate values of the central charge c to a smaller algebra if the rank is high enough: Choosing a suitable parametrization of the central charge in terms of the rank of the underlying simple Lie
We construct the general solution of a class of Fuchsian systems of rank $N$ as well as the associated isomonodromic tau functions in terms of semi-degenerate conformal blocks of $W_N$-algebra with central charge $c=N-1$. The simplest example is give
We construct several quantum coset W-algebras, e.g. sl(2,R)/U(1) and sl(2,R)+sl(2,R) / sl(2,R), and argue that they are finitely nonfreely generated. Furthermore, we discuss in detail their role as unifying W-algebras of Casimir W-algebras. We show t
Sets of commuting charges constructed from the current of a U(1) Kac-Moody algebra are found. There exists a set S_n of such charges for each positive integer n > 1; the corresponding value of the central charge in the Feigin-Fuchs realization of the