ترغب بنشر مسار تعليمي؟ اضغط هنا

Born-Infeld Phantom Gravastars

62   0   0.0 ( 0 )
 نشر من قبل Neven Bilic
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Neven Bilic -




اسأل ChatGPT حول البحث

We construct new gravitational vacuum star solutions with a Born-Infeld phantom replacing the de Sitter interior. The model allows for a wide range of masses and radii required by phenomenology, and can be motivated from low energy string theory.



قيم البحث

اقرأ أيضاً

We derive new types of $U(1)^n$ Born-Infeld actions based on N=2 special geometry in four dimensions. As in the single vector multiplet (n=1) case, the non--linear actions originate, in a particular limit, from quadratic expressions in the Maxwell fi elds. The dynamics is encoded in a set of coefficients $d_{ABC}$ related to the third derivative of the holomorphic prepotential and in an SU(2) triplet of N=2 Fayet-Iliopoulos charges, which must be suitably chosen to preserve a residual N=1 supersymmetry.
390 - Z. G. Huang , H. Q. Lu , W. Fang 2009
Applying the parametrization of dark energy density, we can construct directly independent-model potentials. In Born-Infeld type phantom dark energy model, we consider four special parametrization equation of state parameter. The evolutive behavior o f dark energy density with respect to red-shift $z$, potentials with respect to $phi$ and $z$ are shown mathematically. Moreover, we investigate the effect of parameter $eta$ upon the evolution of the constructed potential with respect to $z$. These results show that the evolutive behavior of constructed Born-Infeld type dark energy model is quite different from those of the other models.
In this paper, we investigate the dynamics of Born-Infeld(B-I) phantom model in the $omega-omega$ plane, which is defined by the equation of state parameter for the dark energy and its derivative with respect to $N$(the logarithm of the scale factor $a$). We find the scalar field equation of motion in $omega-omega$ plane, and show mathematically the property of attractor solutions which correspond to $omega_phisim-1$, $Omega_phi=1$, which avoid the Big rip problem and meets the current observations well.
We investigate $U(1)^{,n}$ supersymmetric Born-Infeld Lagrangians with a second non-linearly realized supersymmetry. The resulting non-linear structure is more complex than the square root present in the standard Born-Infeld action, and nonetheless t he quadratic constraints determining these models can be solved exactly in all cases containing three vector multiplets. The corresponding models are classified by cubic holomorphic prepotentials. Their symmetry structures are associated to projective cubic varieties.
The requirement of the existence of a holographic c-function for higher derivative theories is a very restrictive one and hence most theories do not possess this property. Here, we show that, when some of the parameters are fixed, the $Dgeq3$ Born-In feld gravity theories admit a holographic c-function. We work out the details of the $D=3$ theory with no free parameters, which is a non-minimal Born-Infeld type extension of new massive gravity. Moreover, we show that these theories generate an infinite number of higher derivative models admitting a c-function in a suitable expansion and therefore they can be studied at any truncated order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا