ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Energy from Casimir Energy on Noncommutative Extra Dimensions

105   0   0.0 ( 0 )
 نشر من قبل Benjamin C. Harms
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the possibility that dark energy is a manifestation of the Casimir energy on extra dimensions with the topology of $S^2$. We consider our universe to be $M^4 times S^2$ and modify the geometry by introducing noncommutativity on the extra dimensions only, i.e. replacing $S^2$ with the fuzzy version $S_{F}^2$. We find the energy density as a function of the size of the representation $M+1$ of the algebra of $S_{F}^2$, and we calculate its value for the $M+1=2$ case. The value of the energy density turns out to be positive, i.e. provides dark energy, and the size of the extra dimensions agrees with the experimental limit. We also recover the correct commutative limit as the noncommutative parameter goes to zero.



قيم البحث

اقرأ أيضاً

We consider how accelerated expansion, whether due to inflation or dark energy, imposes strong constraints on fundamental theories obtained by compactification from higher dimensions. For theories that obey the null energy condition (NEC), we find th at inflationary cosmology is impossible for a wide range of compactifications; and a dark energy phase consistent with observations is only possible if both Newtons gravitational constant and the dark energy equation-of-state vary with time. If the theory violates the NEC, inflation and dark energy are only possible if the NEC-violating elements are inhomogeneously distributed in thecompact dimensions and vary with time in precise synchrony with the matter and energy density in the non-compact dimensions. Although our proofs are derived assuming general relativity applies in both four and higher dimensions and certain forms of metrics, we argue that similar constraints must apply for more general compactifications.
Perhaps the greatest challenge for fundamental theories based on compactification from extra dimensions is accommodating a period of accelerated cosmological expansion. Previous studies have identified constraints imposed by the existence of dark ene rgy for two overlapping classes of compactified theories: (1) those in which the higher dimensional picture satisfies certain metric properties selected to reproduce known low energy phenomenology; or (2) those derived from string theory assuming they satisfy the Swampland conjectures. For either class, the analyses showed that dark energy is only possible if it takes the form of quintessence. In this paper, we explore the consequences for theories that belong to both classes and show that the joint constraints are highly restrictive, leaving few options.
122 - D.I.Kazakov , G.S.Vartanov 2004
We analyze the behaviour of the high-energy scattering amplitude within the brane world scenario in extra dimensions. We argue that contrary to the popular opinion based on the Kaluza-Klein approach, the cross-section does not increase with energy, b ut changes the slope close to the compactification scale and then decreases like in the 4-dimensional theory. A particular example of the quark-antiquark scattering due to the gluon exchange in the bulk is considered.
168 - Shoichi Ichinose 2012
We regard the Casimir energy of the universe as the main contribution to the cosmological constant. Using 5 dimensional models of the universe, the flat model and the warped one, we calculate Casimir energy. Introducing the new regularization, called {it sphere lattice regularization}, we solve the divergence problem. The regularization utilizes the closed-string configuration. We consider 4 different approaches: 1) restriction of the integral region (Randall-Schwartz), 2) method of 1) using the minimal area surfaces, 3) introducing the weight function, 4) {it generalized path-integral}. We claim the 5 dimensional field theories are quantized properly and all divergences are renormalized. At present, it is explicitly demonstrated in the numerical way, not in the analytical way. The renormalization-group function ($be$-function) is explicitly obtained. The renormalization-group flow of the cosmological constant is concretely obtained.
We discuss a realization of a small field inflation based on string inspired supergravities. In theories accompanying extra dimensions, compactification of them with small radii is required for realistic situations. Since the extra dimension can have a periodicity, there will appear (quasi-)periodic functions under transformations of moduli of the extra dimensions in low energy scales. Such a periodic property can lead to a UV completion of so-called multi-natural inflation model where inflaton potential consists of a sum of multiple sinusoidal functions with a decay constant smaller than the Planck scale. As an illustration, we construct a SUSY breaking model, and then show that such an inflaton potential can be generated by a sum of world sheet instantons in intersecting brane models on extra dimensions containing $T^2/{mathbb Z}_2$ orbifold. We show also predictions of cosmic observables by numerical analyzes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا