ترغب بنشر مسار تعليمي؟ اضغط هنا

Casimir Energy of the Universe and the Dark Energy Problem

176   0   0.0 ( 0 )
 نشر من قبل Shoichi Ichinose
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Shoichi Ichinose




اسأل ChatGPT حول البحث

We regard the Casimir energy of the universe as the main contribution to the cosmological constant. Using 5 dimensional models of the universe, the flat model and the warped one, we calculate Casimir energy. Introducing the new regularization, called {it sphere lattice regularization}, we solve the divergence problem. The regularization utilizes the closed-string configuration. We consider 4 different approaches: 1) restriction of the integral region (Randall-Schwartz), 2) method of 1) using the minimal area surfaces, 3) introducing the weight function, 4) {it generalized path-integral}. We claim the 5 dimensional field theories are quantized properly and all divergences are renormalized. At present, it is explicitly demonstrated in the numerical way, not in the analytical way. The renormalization-group function ($be$-function) is explicitly obtained. The renormalization-group flow of the cosmological constant is concretely obtained.



قيم البحث

اقرأ أيضاً

223 - Shoichi Ichinose 2011
Casimir energy is calculated for 5D scalar theory in the {it warped} geometry. A new regularization, called {it sphere lattice regularization}, is taken. The regularized configuration is {it closed-string like}. We numerically evaluate $La$(4D UV-cut off), $om$(5D bulk curvature, extra space UV-boundary parameter) and $T$(extra space IR-boundary parameter) dependence of Casimir energy. 5D Casimir energy is {it finitely} obtained after the {it proper renormalization procedure.} The {it warp parameter} $om$ suffers from the {it renormalization effect}. Regarding Casimir energy as the main contribution to the cosmological term, we examine the dark energy problem.
396 - Joshua Frieman 2008
The discovery ten years ago that the expansion of the Universe is accelerating put in place the last major building block of the present cosmological model, in which the Universe is composed of 4% baryons, 20% dark matter, and 76% dark energy. At the same time, it posed one of the most profound mysteries in all of science, with deep connections to both astrophysics and particle physics. Cosmic acceleration could arise from the repulsive gravity of dark energy -- for example, the quantum energy of the vacuum -- or it may signal that General Relativity breaks down on cosmological scales and must be replaced. We review the present observational evidence for cosmic acceleration and what it has revealed about dark energy, discuss the various theoretical ideas that have been proposed to explain acceleration, and describe the key observational probes that will shed light on this enigma in the coming years.
70 - Mian Wang 2003
Recent observations confirm that our universe is flat and consists of a dark energy component $Omega_{DE}simeq 0.7$. This dark energy is responsible for the cosmic acceleration as well as determines the feature of future evolution of the universe. In this paper, we discuss the dark energy of universe in the framework of scalar-tensor cosmology. It is shown that the dark energy is the main part of the energy density of the gravitational scalar field and the future universe will expand as $a(t)sim t^{1.3}$.
We study the effects of light-cone fluctuations on the renormalized zero-point energy associated with a free massless scalar field in the presence of boundaries. In order to simulate light-cone fluctuations we introduce a space-time dependent random coefficient in the Klein-Gordon operator. We assume that the field is defined in a domain with one confined direction. For simplicity, we choose the symmetric case of two parallel plates separated by a distance $a$. The correction to the renormalized vacuum energy density between the plates goes as $1/a^{8}$ instead of the usual $1/a^{4}$ dependence for the free case. In turn we also show that light-cone fluctuations break down the vacuum pressure homogeneity between the plates.
We point out that modern brane theories suffer from a severe vacuum energy problem. To be specific, the Casimir energy associated with the matter fields confined to the brane, is stemming from the one and the same localization mechanism which forms t he brane itself, and is thus generically unavoidable. Possible practical solutions are discussed, including in particular spontaneously broken supersymmetry, and quantum mechanically induced brane tension.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا