ﻻ يوجد ملخص باللغة العربية
In this paper we construct N=(1,0) and N=(1,1/2) non-singlet Q-deformed supersymmetric U(1) actions in components. We obtain an exact expression for the enhanced supersymmetry action by turning off particular degrees of freedom of the deformation tensor. We analyze the behavior of the action upon restoring weekly some of the deformation parameters, obtaining a non trivial interaction term between a scalar and the gauge field, breaking the supersymmetry down to N=(1,0). Additionally, we present the corresponding set of unbroken supersymmetry transformations. We work in harmonic superspace in four Euclidean dimensions.
We study a non-anticommutative chiral non-singlet deformation of the N=(1,1) abelian gauge multiplet in Euclidean harmonic superspace. We present a closed form of the gauge transformations and the unbroken N =(1,0) supersymmetry transformations prese
Compactifications of 6d N=(1,0) SCFTs give rise to new 4d N=1 SCFTs and shed light on interesting dualities between such theories. In this paper we continue exploring this line of research by extending the class of compactified 6d theories to the D-t
We holomorphically embed nonlinear sigma models (NLSMs) on $SO(2N)/U(N)$ and $Sp(N)/U(N)$ in the hyper-K{a}hler (HK) NLSM on the cotangent bundle of the Grassmann manifold $T^ast G_{2N,N}$, which is defined by $G_{N+M,M}=frac{SU(N+M)}{SU(N)times SU(M
We study vacua, walls and three-pronged junctions of mass-deformed nonlinear sigma models on $SO(2N)/U(N)$ and $Sp(N)/U(N)$ for generic $N$. We review and discuss the on-shell component Lagrangians of the ${mathcal{N}}=2$ nonlinear sigma model on the
Strings in $mathcal{N}=2$ supersymmetric ${rm U}(1)^N$ gauge theories with $N$ hypermultiplets are studied in the generic setting of an arbitrary Fayet-Iliopoulos triplet of parameters for each gauge group and an invertible charge matrix. Although th