ﻻ يوجد ملخص باللغة العربية
Compactifications of 6d N=(1,0) SCFTs give rise to new 4d N=1 SCFTs and shed light on interesting dualities between such theories. In this paper we continue exploring this line of research by extending the class of compactified 6d theories to the D-type case. The simplest such 6d theory arises from D5 branes probing D-type singularities. Equivalently, this theory can be obtained from an F-theory compactification using -2-curves intersecting according to a D-type quiver. Our approach is two-fold. We start by compactifying the 6d SCFT on a Riemann surface and compute the central charges of the resulting 4d theory by integrating the 6d anomaly polynomial over the Riemann surface. As a second step, in order to find candidate 4d UV Lagrangians, there is an intermediate 5d theory that serves to construct 4d domain walls. These can be used as building blocks to obtain torus compactifications. In contrast to the A-type case, the vanishing of anomalies in the 4d theory turns out to be very restrictive and constraints the choices of gauge nodes and matter content severely. As a consequence, in this paper one has to resort to non-maximal boundary conditions for the 4d domain walls. However, the comparison to the 6d theory compactified on the Riemann surface becomes less tractable.
In this work we study type IIB Calabi-Yau orientifold compactifications in the presence of space-time filling D7-branes and O7-planes. In particular, we conclude that $alpha^2 g_s$-corrections to their DBI actions lead to a modification of the four-d
We consider all 4d $mathcal{N}=2$ theories of class $mathcal{S}$ arising from the compactification of exceptional 6d $(2,0)$ SCFTs on a three-punctured sphere with a simple puncture. We find that each of these 4d theories has another origin as a 6d $
In this paper we construct N=(1,0) and N=(1,1/2) non-singlet Q-deformed supersymmetric U(1) actions in components. We obtain an exact expression for the enhanced supersymmetry action by turning off particular degrees of freedom of the deformation ten
We continue the development of a theory of off-shell supersymmetric representations analogous to that of compact Lie algebras such as SU(3). For off-shell 4D, N = 1 systems, quark-like representations have been identified [1] in terms of cis-Adinkras
Adinkras are graphs that encode a supersymmetric representations transformation laws that have been reduced to one dimension, that of time. A goal of the supersymmetry ``genomics project is to classify all 4D, $mathcal{N}=1$ off-shell supermultiplets