ﻻ يوجد ملخص باللغة العربية
Boundary form factor axioms are derived for the matrix elements of local boundary operators in integrable 1+1 dimensional boundary quantum field theories using the analyticity properties of correlators via the boundary reduction formula. Minimal solutions are determined for the integrable boundary perturbations of the free boson, free fermion (Ising), Lee-Yang and sinh-Gordon models and the two point functions calculated from them are checked against the exact solutions in the free cases and against the conformal data in the ultraviolet limit for the Lee-Yang model. In the case of the free boson/fermion the dimension of the solution space of the boundary form factor equation is shown to match the number of independent local operators. We obtain excellent agreement which proves not only the correctness of the solutions but also confirms the form factor axioms.
Using the recently introduced boundary form factor bootstrap equations, we map the complete space of their solutions for the boundary version of the scaling Lee-Yang model and sinh-Gordon theory. We show that the complete space of solutions, graded b
Relativistic spin states are convention dependent. In this work we prove that the zero momentum-transfer limits of the leading two form factors in the decomposition of the energy-momentum tensor matrix elements are independent of this choice. In part
We replace a Hamiltonian by a modular Hamiltonian in the spectral form factor and the level spacing distribution function. This establishes a connection between quantities within quantum entanglement and quantum chaos. To have a universal study for q
By adopting a local QFT framework one can derive in a non-perturbative manner the constraints imposed by Poincare symmetry on the form factors appearing in the Lorentz covariant decomposition of the energy-momentum tensor matrix elements. In particul
We use recent data on K^+ -> pi^+ e^+ e^-, together with known values for the pion form factor, to derive experimental values for the kaon electromagnetic form factor for 0 < q^2 < 0.125 (GeV/c)^2. The results are then compared with the predictions o