ﻻ يوجد ملخص باللغة العربية
We use recent data on K^+ -> pi^+ e^+ e^-, together with known values for the pion form factor, to derive experimental values for the kaon electromagnetic form factor for 0 < q^2 < 0.125 (GeV/c)^2. The results are then compared with the predictions of the Vector Meson Dominance model, which gives a good fit to the experimental results.
The electromagnetic form factor of the pion in the space-like region, and at finite temperature, $F_{pi}(Q^{2},T)$, is obtained from a QCD Finite Energy Sum Rule. The form factor decreases with increasing T, and vanishes at some critical temperature,
This talk reviews recent lattice QCD simulations of the K->pi semi-leptonic form factor.
The measured electromagnetic form factors of $Lambda$ hyperon in the time-like region are significantly deviated from pQCD prediction. We attribute the non-vanishing cross section near threshold to be the contribution of below-threshold $phi$(2170) s
The electromagnetic current~$J^+$ for spin-1, is used here to extract the electromagnetic form-factors of a light-front constituent quark model. The charge ($G_0$), magnetic ($G_1$) and quadrupole $G_2$ form factors are calculated using different pre
New precise experimental information on $sigma_{tot}(e^+e^- to pi^+ pi^-)$ is transferred into the space-like region, by taking advantage of the analyticity. As a result a rigorous pion electromagnetic form factor behavior is obtained. The latter with some existing model predictions is compared.