ترغب بنشر مسار تعليمي؟ اضغط هنا

Superextension of Jordanian Deformation for U(osp(1|2))and its Generalizations

155   0   0.0 ( 0 )
 نشر من قبل Jerzy Lukierski
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe Jordanian ``nonstandard deformation of U(osp(1|2)) by employing the twist quantization technique. An extension of these results to U(osp(1|4))describing deformed graded D=4 $AdS$ symmetries and to their super-Poincar{e} limit is outlined.

قيم البحث

اقرأ أيضاً

The periodic $OSp(1|2)$ quantum spin chain has both a graded and a non-graded version. Naively, the Bethe ansatz solution for the non-graded version does not account for the complete spectrum of the transfer matrix, and we propose a simple mechanism for achieving completeness. In contrast, for the graded version, this issue does not arise. We also clarify the symmetries of bot
We determine the Clebsch-Gordan and Racah-Wigner coefficients for continuous series of representations of the quantum deformed algebras U_q(sl(2)) and U_q(osp(1|2)). While our results for the former algebra reproduce formulas by Ponsot and Teschner, the expressions for the orthosymplectic algebra are new. Up to some normalization factors, the associated Racah-Wigner coefficients are shown to agree with the fusing matrix in the Neveu-Schwarz sector of N=1 supersymmetric Liouville field theory.
We construct a non-commutative kappa-Minkowski deformation of U(1) gauge theory, following a general approach, recently proposed in JHEP 2008 (2020) 041. We obtain an exact (all orders in the non-commutativity parameter) expression for both the defor med gauge transformations and the deformed field strength, which is covariant under these transformations. The corresponding Yang-Mills Lagrangian is gauge covariant and reproduces the Maxwell Lagrangian in the commutative limit. Gauge invariance of the action functional requires a non-trivial integration measure which, in the commutative limit, does not reduce to the trivial one. We discuss the physical meaning of such a nontrivial commutative limit, relating it to a nontrivial space-time curvature of the undeformed theory. Moreover, we propose a rescaled kappa-Minkowski non-commutative structure, which exhibits a standard flat commutative limit.
We study some algebraic properties of the vector supersymmetry (VSUSY) algebra, a graded extension of the four-dimensional Poincare algebra with two odd generators, a vector and a scalar, and two central charges. The anticommutator between the two od d generators gives the four-momentum operator, from which the name vector supersymmetry. We construct the Casimir operators for this algebra and we show how both algebra and Casimirs can be derived by contraction from the simple orthosymplectic algebra OSp(3,2|2). In particular, we construct the analogue of superspin for vector supersymmetry and we show that, due to the algebraic structure of the Casimirs, the multiplets are either doublets of spin (s,s+1) or two spin 1/2 states. Finally, we identify an odd operator, which is an invariant in a subclass of representations where a BPS-like algebraic relation between the mass and the values of the central charges is satisfied.
Generating functions for Clebsch-Gordan coefficients of osp(1|2) are derived. These coefficients are expressed as q goes to - 1 limits of the dual q-Hahn polynomials. The generating functions are obtained using two different approaches respectively b ased on the coherent-state representation and the position representation of osp(1j2).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا