ﻻ يوجد ملخص باللغة العربية
Massive renormalizable Yang-Mills theories in three dimensions are analysed within the algebraic renormalization in the Landau gauge. In analogy with the four dimensional case, the renormalization of the mass operator A^2 turns out to be expressed in terms of the fields and coupling constant renormalization factors. We verify the relation we obtain for the operator anomalous dimension by explicit calculations in the large N_f. The generalization to other gauges such as the nonlinear Curci-Ferrari gauge is briefly outlined.
Quantum properties of topological Yang-Mills theory in (anti-)self-dual Landau gauge were recently investigated by the authors. We extend the analysis of renormalizability for two generalized classes of gauges; each of them depending on one gauge par
Using the background field method, we study in a general covariant gauge the renormalization of the 6-dimensional Yang-Mills theory. This requires background gauge invariant counterterms, some of which do not vanish on shell. Such counterterms occur,
We show how to consistently renormalize $mathcal{N} = 1$ and $mathcal{N} = 2$ super-Yang-Mills theories in flat space with a local (i.e. space-time-dependent) renormalization scale in a holomorphic scheme. The action gets enhanced by a term proportio
Various gauge invariant but non-Yang-Mills dynamical models are discussed: Precis of Chern-Simons theory in (2+1)-dimensions and reduction to (1+1)-dimensional B-F theories; gauge theories for (1+1)-dimensional gravity-matter interactions; parity and gauge invariant mass term in (2+1)-dimensions.
We investigate a dynamical mass generation mechanism for the off-diagonal gluons and ghosts in SU(N) Yang-Mills theories, quantized in the maximal Abelian gauge. Such a mass can be seen as evidence for the Abelian dominance in that gauge. It originat