ﻻ يوجد ملخص باللغة العربية
The double triangle algebra(DTA) associated to an ADE graph is considered. A description of its bialgebra structure based on a reconstruction approach is given. This approach takes as initial data the representation theory of the DTA as given by Ocneanus cell calculus. It is also proved that the resulting DTA has the structure of a weak *-Hopf algebra. As an illustrative example, the case of the graph A3 is described in detail.
We show that the Ocneanu algebra of quantum symmetries, for an ADE diagram (or for higher Coxeter-Dynkin systems, like the Di Francesco - Zuber system) is, in most cases, deduced from the structure of the modular T matrix in the A series. We recover
For every ADE Dynkin diagram, we give a realization, in terms of usual fusion algebras (graph algebras), of the algebra of quantum symmetries described by the associated Ocneanu graph. We give explicitly, in each case, the list of the corresponding twisted partition functions
We initiate the study of (2,0) little string theory of ADE type using its definition in terms of IIB string compactified on an ADE singularity. As one application, we derive a 5d ADE quiver gauge theory that describes the little string compactified o
We discuss some basic aspects of quantum fields on star graphs, focusing on boundary conditions, symmetries and scale invariance in particular. We investigate the four-fermion bulk interaction in detail. Using bosonization and vertex operators, we so
We study space-time symmetries in scalar quantum field theory (including interacting theories) on static space-times. We first consider Euclidean quantum field theory on a static Riemannian manifold, and show that the isometry group is generated by o