ترغب بنشر مسار تعليمي؟ اضغط هنا

Matrix Models and Gravitational Corrections

73   0   0.0 ( 0 )
 نشر من قبل Robbert Dijkgraaf
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide evidence of the relation between supersymmetric gauge theories and matrix models beyond the planar limit. We compute gravitational R^2 couplings in gauge theories perturbatively, by summing genus one matrix model diagrams. These diagrams give the leading 1/N^2 corrections in the large N limit of the matrix model and can be related to twist field correlators in a collective conformal field theory. In the case of softly broken SU(N) N=2 super Yang-Mills theories, we find that these exact solutions of the matrix models agree with results obtained by topological field theory methods.

قيم البحث

اقرأ أيضاً

We study physics concerning the cosmological constant problem in the framework of effective field theory and suggest that a dominant part of dark energy can originate from gravitational corrections of vacuum energy, under the assumption that the clas sical gravitational fields do not couple to a large portion of the vacuum energy effectively, in spite of the coupling between graviton and matters at a microscopic level. Our speculation is excellent with terascale supersymmetry.
70 - Lubos Motl 2001
In this short note we construct the DLCQ description of the flux seven-branes in type IIA string theory and discuss its basic properties. The matrix model involves dipole fields. We explain the relation of this nonlocal matrix model to various orbifo lds. We also give a spacetime interpretation of the Seiberg-Witten-like map, proposed in a different context first by Bergman and Ganor, that converts this matrix model to a local, highly nonlinear theory.
60 - V. A. Kazakov 2000
We review some old and new methods of reduction of the number of degrees of freedom from ~N^2 to ~N in the multi-matrix integrals.
We point out that in some situations it is possible to use matrix model techniques a la Dijkgraaf-Vafa to perturbatively compute D-brane instanton effects. This provides an explanation in terms of stringy instantons of the results in hep-th/0311181. We check this proposal in some simple scenarios. We point out some interesting consequences of this observation, such as the fact that it gives a perturbative way of computing stringy multi-instanton effects. It also provides a further interpretation of D-brane instantons as residual instantons of higgsed supergroups.
We derive a family of matrix models which encode solutions to the Seiberg-Witten theory in 4 and 5 dimensions. Partition functions of these matrix models are equal to the corresponding Nekrasov partition functions, and their spectral curves are the S eiberg-Witten curves of the corresponding theories. In consequence of the geometric engineering, the 5-dimensional case provides a novel matrix model formulation of the topological string theory on a wide class of non-compact toric Calabi-Yau manifolds. This approach also unifies and generalizes other matrix models, such as the Eguchi-Yang matrix model, matrix models for bundles over $P^1$, and Chern-Simons matrix models for lens spaces, which arise as various limits of our general result.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا