ﻻ يوجد ملخص باللغة العربية
Assigning an intrinsic constant dipole moment to any field, we present a new kind of associative star product, the dipole star product, which was first introduced in [hep-th/0008030]. We develop the mathematics necessary to study the corresponding noncommutative dipole field theories. These theories are sensible non-local field theories with no IR/UV mixing. In addition we discuss that the Lorentz symmetry in these theories is ``softly broken and in some particular cases the CP (and even CPT) violation in these theories may become observable. We show that a non-trivial dipole extension of N=4, D=4 gauge theories can only be obtained if we break the SU(4) R (and hence super)-symmetry. Such noncommutative dipole extensions, which in the maximal supersymmetric cases are N=2 gauge theories with matter, can be embedded in string theory as the theories on D3-branes probing a smooth Taub-NUT space with three form fluxes turned on or alternatively by probing a space with R-symmetry twists. We show the equivalences between the two approaches and also discuss the M-theory realization.
We revisit the question of microcausality violations in quantum field theory on noncommutative spacetime, taking $O(x)=:phistarphi:(x)$ as a sample observable. Using methods of the theory of distributions, we precisely describe the support properties
UV/IR mixing is one of the most important features of noncommutative field theories. As a consequence of this coupling of the UV and IR sectors, the configuration of fields at the zero momentum limit in these theories is a very singular configuration
In the absence of gauge fields, quantum field theories on the Groenewold-Moyal (GM) plane are invariant under a twisted action of the Poincare group if they are formulated following [1, 2, 3, 4, 5, 6]. In that formulation, such theories also have no
In this paper we study the phenomenon of UV/IR mixing in noncommutative field theories from the point of view of world-sheet open-closed duality in string theory. New infrared divergences in noncommutative field theories arise as a result of integrat
We calculate conformal anomalies in noncommutative gauge theories by using the path integral method (Fujikawas method). Along with the axial anomalies and chiral gauge anomalies, conformal anomalies take the form of the straightforward Moyal deformat