ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological Evolution of a Brane Universe in a Type 0 String Background

39   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English
 تأليف I. Pappa




اسأل ChatGPT حول البحث

We study the cosmological evolution of a D3-brane Universe in a type 0 string background. We follow the brane universe along the radial coordinate of the background and we calculate the energy density which is induced on the brane because of its motion in the bulk. For constant values of tachyon and dilaton an inflationary phase is appearing. For non constant values of tachyon and dilaton and for a particular range of values of the scale factor of the brane-universe, the effective energy density is dominated by a term proportional to $frac{1}{(logalpha)^{4}}$ indicating a slowly varying inflationary phase.

قيم البحث

اقرأ أيضاً

Brane world six dimensional scenarios with string like metric has been proposed to alleviate the problem of field localization. However, these models have been suffering from some drawbacks related with energy conditions as well as from difficulties to find analytical solutions. In this work, we propose a model where a brane is made of a scalar field with bounce-type configurations and embedded in a bulk with a string-like metric. This model produces a sound AdS scenario where none of the important physical quantities is infinite. Among these quantities are the components of the energy momentum tensor, which have its positivity ensured by a suitable choice of the bounce configurations. Another advantage of this model is that the warp factor can be obtained analytically from the equations of motion for the scalar field, obtaining as a result a thick brane configuration, in a six dimensional context. Moreover, the study of the scalar field localization in these scenario is done.
A construction of compact tachyon-free orientifolds of the non-supersymmetric Type 0B string theory is presented. Moreover, we study effective non-supersymmetric gauge theories arising on self-dual D3-branes in Type 0B orbifolds and orientifolds.
We present a brane-world scenario in which two regions of $AdS_5$ space-time are glued together along a 3-brane with constant positive curvature such that {em all} spatial dimensions form a compact manifold of topology $S^4$. It turns out that the in duced geometry on the brane is given by Einsteins static universe. It is possible to achieve an anisotropy of the manifold which allows for a huge hierarchy between the size of the extra dimension $R$ and the size of the observable universe $R_U$ at present. This anisotropy is also at the origin of a very peculiar property of our model: the physical distance between {em any two points} on the brane is of the order of the size of the extra dimension $R$ regardless of their distance measured with the use of the induced metric on the brane. In an intermediate distance regime $R ll r ll R_U$ gravity on the brane is shown to be effectively 4-dimensional, with corresponding large distance corrections, in complete analogy with the Randall-Sundrum II model. For very large distances $r sim R_U$ we recover gravity in Einsteins static universe. However, in contrast to the Randall-Sundrum II model the difference in topology has the advantage of giving rise to a geodesically complete space.
The $Z_2times Z_2$ heterotic string orbifold gives rise to a large space of phenomenological three generation models that serves as a testing ground to explore how the Standard Model of particle physics may be incorporated in a theory of quantum grav ity. Recently, we demonstrated the existence of type 0 $Z_2times Z_2$ heterotic string orbifolds in which there are no massless fermionic states. In this paper we demonstrate the existence of non--supersymmetric tachyon--free $Z_2times Z_2$ heterotic string orbifolds that do not contain any massless bosonic states from the twisted sectors. We dub these configurations type ${bar 0}$ models. They necessarily contain untwisted bosonic states, producing the gravitational, gauge and scalar moduli degrees of freedom, but possess an excess of massless fermionic states over bosonic ones, hence producing a positive cosmological constant. Such configurations may be instrumental when trying to understand the string dynamics in the early universe.
We study the probability distribution P(Lambda) of the cosmological constant Lambda in a specific set of KKLT type models of supersymmetric IIB vacua. We show that, as we sweep through the quantized flux values in this flux compactification, P(Lambda ) behaves divergent at Lambda =0^- and the median magnitude of Lambda drops exponentially as the number of complex structure moduli h^{2,1} increases. Also, owing to the hierarchical and approximate no-scale structure, the probability of having a positive Hessian (mass squared matrix) approaches unity as h^{2,1} increases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا