ترغب بنشر مسار تعليمي؟ اضغط هنا

Preference for a Vanishingly Small Cosmological Constant in Supersymmetric Vacua in a Type IIB String Theory Model

74   0   0.0 ( 0 )
 نشر من قبل Yoske Sumitomo
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the probability distribution P(Lambda) of the cosmological constant Lambda in a specific set of KKLT type models of supersymmetric IIB vacua. We show that, as we sweep through the quantized flux values in this flux compactification, P(Lambda) behaves divergent at Lambda =0^- and the median magnitude of Lambda drops exponentially as the number of complex structure moduli h^{2,1} increases. Also, owing to the hierarchical and approximate no-scale structure, the probability of having a positive Hessian (mass squared matrix) approaches unity as h^{2,1} increases.

قيم البحث

اقرأ أيضاً

The search for classically stable Type IIA de-Sitter vacua typically starts with an ansatz that gives Anti-de-Sitter supersymmetric vacua and then raises the cosmological constant by modifying the compactification. As one raises the cosmological cons tant, the couplings typically destabilize the classically stable vacuum, so the probability that this approach will lead to a classically stable de-Sitter vacuum is Gaussianly suppressed. This suggests that classically stable de-Sitter vacua in string theory (at least in the Type IIA region), especially those with relatively high cosmological constants, are very rare. The probability that a typical de-Sitter extremum is classically stable (i.e., tachyon-free) is argued to be Gaussianly suppressed as a function of the number of moduli.
Based on the probability distributions of products of random variables, we propose a simple stringy mechanism that prefers the meta-stable vacua with a small cosmological constant. We state some relevant properties of the probability distributions of functions of random variables. We then illustrate the mechanism within the flux compactification models in Type IIB string theory. As a result of the stringy dynamics, we argue that the generic probability distribution for the meta-stable vacua typically peaks with a divergent behavior at the zero value of the cosmological constant. However, its suppression in the single modulus model studied here is modest.
We propose a mechanism for the natural inflation with and without modulation in the framework of type IIB string theory on toroidal orientifold or orbifold. We explicitly construct the stabilization potential of complex structure, dilaton and Kahler moduli, where one of the imaginary component of complex structure moduli becomes light which is identified as the inflaton. The inflaton potential is generated by the gaugino-condensation term which receives the one-loop threshold corrections determined by the field value of complex structure moduli and the axion decay constant of inflaton is enhanced by the inverse of one-loop factor. We also find the threshold corrections can also induce the modulations to the original scalar potential for the natural inflation. Depending on these modulations, we can predict several sizes of tensor-to-scalar ratio as well as the other cosmological observables reported by WMAP, Planck and/or BICEP2 collaborations.
Based on the properties of probability distributions of functions of random variables, we proposed earlier a simple stringy mechanism that prefers the meta-stable vacua with a small cosmological constant Lambda. As an illustration of this approach, w e study in this paper particularly simple but non-trivial models of the Kahler uplift in the large volume flux compactification scenario in Type IIB string theory, where all parameters introduced in the model are treated either as fixed constants motivated by physics, or as random variables with some given uniform probability distributions. We determine the value w_0 of the superpotential W_0 at the supersymmetric minima, and find that the resulting probability distribution P(w_0) peaks at w_0=0; furthermore, this peaking behavior strengthens as the number of complex structure moduli increases. The resulting probability distribution P(Lambda) for meta-stable vacua also peaks as Lambda -> 0, for both positive and negative Lambda. This peaking/divergent behavior of P(Lambda) strengthens as the number of moduli increases. In some scenarios for Lambda > 0, the likely value of Lambda decreases exponentially as the number of moduli increases. The light cosmological moduli issue accompanying a very small Lambda is also mentioned.
160 - S.-H. Henry Tye 2018
With no free parameter (except the string scale $M_S$), dynamical flux compactification in Type IIB string theory determines both the cosmological constant (vacuum energy density) $Lambda$ and the Planck mass $M_P$ in terms of $M_S$, thus yielding th eir relation. Following elementary probability theory, we find that a good fraction of the meta-stable de Sitter vacua in the cosmic string theory landscape tend to have an exponentially small cosmological constant $Lambda$ compared to either the string scale $M_S$ or the Planck scale $M_P$, i.e., $Lambda ll M_S^4 ll M_P^4$. Here we illustrate the basic stringy ideas with a simple scalar field $phi^3$ (or $phi^4$) model coupled with fluxes to show how this may happen and how the usual radiative instability problem is bypassed (since there are no parameters to be fine-tuned). These low lying semi-classical de Sitter vacua tend to be accompanied by light scalar bosons/axions, so the Higgs boson mass hierarchy problem may be ameliorated as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا