ﻻ يوجد ملخص باللغة العربية
We consider the classical equations of the Born-Infeld-Abelian-Higgs model (with and without coupling to gravity) in an axially symmetric ansatz. A numerical analysis of the equations reveals that the (gravitating) Nielsen-Olesen vortices are smoothly deformed by the Born-Infeld interaction, characterized by a coupling constant $beta^2$, and that these solutions cease to exist at a critical value of $beta^2$. When the critical value is approached, the length of the magnetic field on the symmetry axis becomes infinite.
We numerically investigate the evolution of the holographic subregion complexity during a quench process in Einstein-Born-Infeld theory. Based on the subregion CV conjecture, we argue that the subregion complexity can be treated as a probe to explore
In this paper, we investigate the dynamics of Born-Infeld(B-I) phantom model in the $omega-omega$ plane, which is defined by the equation of state parameter for the dark energy and its derivative with respect to $N$(the logarithm of the scale factor
We construct an extension of the Abelian Higgs model, which consists of a complex scalar field by including an additional real, electromagnetically neutral scalar field. We couple this real scalar field to the complex scalar field via a quartic coupl
We show that the equation of motion from the Dirac-Born-Infeld effective action of a general scalar field with some specific potentials admits exact solutions after appropriate field redefinitions. Based on the exact solutions and their energy-moment
We study standing-wave solutions of Born-Infeld electrodynamics, with nonzero electromagnetic field in a region between two parallel conducting plates. We consider the simplest case which occurs when the vector potential describing the electromagneti