ﻻ يوجد ملخص باللغة العربية
We propose an explicit construction of the deformation quantization of the general second-class constrained system, which is covariant with respect to local coordinates on the phase space. The approach is based on constructing the effective first-class constraint (gauge) system equivalent to the original second-class one and can also be understood as a far-going generalization of the Fedosov quantization. The effective gauge system is quantized by the BFV-BRST procedure. The star product for the Dirac bracket is explicitly constructed as the quantum multiplication of BRST observables. We introduce and explicitly construct a Dirac bracket counterpart of the symplectic connection, called the Dirac connection. We identify a particular star product associated with the Dirac connection for which the constraints are in the center of the respective star-commutator algebra. It is shown that when reduced to the constraint surface, this star product is a Fedosov star product on the constraint surface considered as a symplectic manifold.
A general method of the BRST--anti-BRST symmetric conversion of second-class constraints is presented. It yields a pair of commuting and nilpotent BRST-type charges that can be naturally regarded as BRST and anti-BRST ones. Interchanging the BRST and
The choice of a star product realization for noncommutative field theory can be regarded as a gauge choice in the space of all equivalent star products. With the goal of having a gauge invariant treatment, we develop tools, such as integration measur
Gauge-invariant systems in unconstrained configuration and phase spaces, equivalent to second-class constraints systems upon a gauge-fixing, are discussed. A mathematical pendulum on an $n-1$-dimensional sphere $S^{n-1}$ as an example of a mechanical
We present a local setup for the recently introduced BRST-invariant formulation of Yang-Mills theories for linear covariant gauges that takes into account the existence of gauge copies `a la Gribov and Zwanziger. Through the convenient use of auxilia
We obtain the higher spin tractor equations of motion conjectured by Gover et al. from a BRST approach and use those methods to prove that they describe massive, partially massless and massless higher spins in conformally flat backgrounds. The tracto