ترغب بنشر مسار تعليمي؟ اضغط هنا

Perturbative ultraviolet and infrared dynamics of noncommutative quantum field theory

54   0   0.0 ( 0 )
 نشر من قبل Masashi Hayakawa
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English
 تأليف M. Hayakawa




اسأل ChatGPT حول البحث

Perturbative aspects of ultraviolet and infrared dynamics of noncommutative quantum field theory is examined in detail. It is observed that high loop momentum contribution to the nonplanar diagram develops a new infrared singularity with respect to the external momentum. This singular behavior is closely related to that of ultraviolet divergence of planar diagram. It is also shown that such a relation is precise in noncommutative Yang-Mills theory, but the same feature does not persist in noncommutative generalization of QED.

قيم البحث

اقرأ أيضاً

The concept of a noncommutative field is formulated based on the interplay between twisted Poincare symmetry and residual symmetry of the Lorentz group. Various general dynamical results supporting this construction, such as the light-wedge causality condition and the integrability condition for Tomonaga-Schwinger equation, are presented. Based on this analysis, the claim of the identity between commutative QFT and noncommutative QFT with twisted Poincare symmetry is refuted.
We discuss the obstruction to the construction of a multiparticle field theory on a $kappa$-Minkowski noncommutative spacetime: the existence of multilocal functions which respect the deformed symmetries of the problem. This construction is only poss ible for a light-like version of the commutation relations, if one requires invariance of the tensor product algebra under the coaction of the $kappa$-Poincare group. This necessitates a braided tensor product. We study the representations of this product, and prove that $kappa$-Poincare-invariant N-point functions belong to an Abelian subalgebra, and are therefore commutative. We use this construction to define the 2-point Whightman and Pauli--Jordan functions, which turn out to be identical to the undeformed ones. We finally outline how to construct a free scalar $kappa$-Poincare-invariant quantum field theory, and identify some open problems.
We consider the deformed Poincare group describing the space-time symmetry of noncommutative field theory. It is shown how the deformed symmetry is related to the explicit symmetry breaking.
The study of the heat-trace expansion in noncommutative field theory has shown the existence of Moyal nonlocal Seeley-DeWitt coefficients which are related to the UV/IR mixing and manifest, in some cases, the non-renormalizability of the theory. We s how that these models can be studied in a worldline approach implemented in phase space and arrive to a master formula for the $n$-point contribution to the heat-trace expansion. This formulation could be useful in understanding some open problems in this area, as the heat-trace expansion for the noncommutative torus or the introduction of renormalizing terms in the action, as well as for generalizations to other nonlocal operators.
We consider a noncommutative field theory with space-time $star$-commutators based on an angular noncommutativity, namely a solvable Lie algebra: the Euclidean in two dimension. The $star$-product can be derived from a twist operator and it is shown to be invariant under twisted Poincare transformations. In momentum space the noncommutativity manifests itself as a noncommutative $star$-deformed sum for the momenta, which allows for an equivalent definition of the $star$-product in terms of twisted convolution of plane waves. As an application, we analyze the $lambda phi^4$ field theory at one-loop and discuss its UV/IR behaviour. We also analyze the kinematics of particle decay for two different situations: the first one corresponds to a splitting of space-time where only space is deformed, whereas the second one entails a non-trivial $star$-multiplication for the time variable, while one of the three spatial coordinates stays commutative.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا